Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Advances in Engineering of Media for Enzymatic Catalysis with Lipase: A Review
Corresponding Author(s) : Anming Wang
Asian Journal of Chemistry,
Vol. 26 No. 13 (2014): Vol 26 Issue 13
Abstract
Most lipases display good solubility and catalytic activity in non-aqueous media. In many types of non-aqueous media, such as ionic liquids, supercritical fluids, fluorous solvents etc., substrates and products are soluble and are therefore able to diffuse during reactions, which might often be beneficial to the lipase activity. Lipases often exhibit higher activity and stability in non-aqueous media than in aqueous environments. In addition, after reactions are carried out in novel media, a simple separation procedure might be included with the reaction process to facilitate improved purification of the products without using chromatographic separation or liquid-liquid extraction. This review focuses on novel medium for lipase catalysis, such as fluorous solvents, ionic liquids, supercritical fluids, etc. Some future perspectives and challenges facing in the media for enzymatic synthesis with lipase are also proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.K. Saxena, P.K. Ghosh, R. Gupta, W.S. Davidson, S. Bradoo and R. Gulati, Curr. Sci., 77, 101 (1999).
- M.B.A. Rahman, D. Krishnan, M.J. Haron, B.A. Tejo, E. Abdulmalek, A.B. Salleh and M. Basri, Asian J. Chem., 25, 3014 (2013); doi:10.14233/ajchem.2013.13492.
- C. Bidjou-Haiour and N. Klai, Asian J. Chem., 25, 4347 (2013); doi:10.14233/ajchem.2013.13973.
- W. Gerhartz, Enzymes in Industry, Production and Application, VCH, Weinheim (1990).
- F.G. Priest, Synthesis and Secretion of Extracellular Enzymes, In: Microbial Degradation of Natural Products, Academic Press, New York, edn 2 (1992).
- Z.Q. Duan, W. Du and D.H. Liu, Bioresour. Technol., 102, 11048 (2011); doi:10.1016/j.biortech.2011.09.003.
- M. Filice, J.M. Guisan and J.M. Palomo, Green Chem., 12, 1365 (2010); doi:10.1039/c003829f.
- P. Mander, S.S. Cho, J.R. Simkhada, Y.H. Choi, D.J. Park and J.C. Yoo, Process Biochem., 47, 635 (2012); doi:10.1016/j.procbio.2012.01.003.
- Y. Xia, J. Liu, J. Liu and B. Yu, Bioorg. Med. Chem. Lett., 22, 3100 (2012); doi:10.1016/j.bmcl.2012.03.066.
- M. Therisod and A.M. Klibanov, J. Am. Chem. Soc., 109, 3977 (1987); doi:10.1021/ja00247a024.
- X. Li and L.T. Kanerva, Org. Lett., 8, 5593 (2006); doi:10.1021/ol0623163.
- M. Päiviö, P. Perkiö and L.T. Kanerva, Tetrahedron Asymm., 23, 230 (2012); doi:10.1016/j.tetasy.2012.02.008.
- Y. Lai, H. Zheng, S. Chai, P. Zhang and X. Chen, Green Chem., 12, 1917 (2010); doi:10.1039/c004547k.
- S. Chai, Y. Lai, J. Xu, H. Zheng, Q. Zhu and P. Zhang, Adv. Synth. Catal., 353, 371 (2011); doi:10.1002/adsc.201000523.
- J.C. Xu, W.M. Li, H. Zheng, Y.F. Lai and P.F. Zhang, Tetrahedron, 67, 9582 (2011); doi:10.1016/j.tet.2011.09.137.
- H. Zheng, Q.Y. Shi, K. Du, Y.J. Mei and P.F. Zhang, Catal. Lett., 143, 118 (2013); doi:10.1007/s10562-012-0920-3.
- P. Lozano, Green Chem., 12, 555 (2010); doi:10.1039/b919088k.
- J.H. Clark and S.J. Tavener, Org. Process Res. Dev., 11, 149 (2007); doi:10.1021/op060160g.
- I. Horvath and J. Rabai, Science, 266, 72 (1994); doi:10.1126/science.266.5182.72.
- B.-J. Deelman, in eds.: J. A. Gladysz, D. P. Curran, I. T. Horváth, Handbook of Fluorous Chemistry, Adv. Synth. Catal., 347, 1451 (2005); doi:10.1002/adsc.200505124.
- H.R. Hobbs, H.M. Kirke, M. Poliakoff and N.R. Thomas, Angew. Chem. Int. Ed. Engl., 46, 7860 (2007); doi:10.1002/anie.200701488.
- S. Shipovskov, Biotechnol. Prog., 24, 1262 (2008); doi:10.1002/btpr.37.
- B. Hungerhoff, H. Sonnenschein and F. Theil, Angew. Chem. Int. Ed., 40, 2492 (2001); doi:10.1002/1521-3773(20010702)40:13<2492::AID-ANIE2492>3.0.CO;2-8.
- P. Beier and D. O’Hagan, Chem. Commun., 1680 (2002); doi:10.1039/b204607p.
- Z. Luo, S.M. Swaleh, F. Theil and D.P. Curran, Org. Lett., 4, 2585 (2002); doi:10.1021/ol026232f.
- T. Maruyama, T. Kotani, H. Yamamura, N. Kamiya and M. Goto, Org. Biomol. Chem., 2, 524 (2004); doi:10.1039/b312212c.
- A. Hafiidz, M. Fauzi, N. Aishah and S. Amin, Renew. Sustain. Energy Rev., 16, 5770 (2012); doi:10.1016/j.rser.2012.06.022.
- T. Welton, Chem. Rev., 99, 2071 (1999); doi:10.1021/cr980032t.
- M.J. Earle, J.M.S.S. Esperança, M.A. Gilea, J.N. Canongia Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon and J.A. Widegren, Nature, 439, 831 (2006); doi:10.1038/nature04451.
- K.R. Seddon, Nat. Mater., 2, 363 (2003); doi:10.1038/nmat907.
- M.G. Freire, A.F.M. Cláudio, J.M.M. Araújo, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes and L.P.N. Rebelo, Chem. Soc. Rev., 41, 4966 (2012); doi:10.1039/c2cs35151j.
- S. Tang, G.A. Baker and H. Zhao, Chem. Soc. Rev., 41, 4030 (2012); doi:10.1039/c2cs15362a.
- F.J. Hernández-Fernández, A.P. de los Ríos, L.J. Lozano-Blanco and C. Godínez, J. Chem. Technol. Biotechnol., 85, 1423 (2010); doi:10.1002/jctb.2453.
- S.P. Ventura, L.D. Santos, J.A. Saraiva and J.A. Coutinho, World J. Microbiol. Biotechnol., 28, 2303 (2012); doi:10.1007/s11274-012-1037-y.
- P. Lozano, J.M. Bernal and A. Navarro, Green Chem., 14, 3026 (2012); doi:10.1039/c2gc36081k.
- A.P. de los Ríos, F.J. Hernández Fernández, D. Gómez, M. Rubio and G. Víllora, Sep. Sci. Technol., 47, 300 (2012); doi:10.1080/01496395.2011.631961.
- H.S. Kim and Y.-M. Koo, J. Korean Chem. Eng., 29, 1610 (2012); doi:10.1007/s11814-012-0043-y.
- N. Byrne and C.A. Angell, J. Mol. Biol., 378, 707 (2008); doi:10.1016/j.jmb.2008.02.050.
- T.O. Akanbi, C.J. Barrow and N. Byrne, Catal. Sci. Technol., 2, 1839 (2012); doi:10.1039/c2cy20392h.
- A.P. de los Ríos, F. van Rantwijk and R.A. Sheldon, Green Chem., 14, 1584 (2012); doi:10.1039/c2gc35196j.
- A. Abbott, US Patent 7,183,143 (2007).
- D. Zhao, Y. Liao and Z. Zhang, Clean Soil Air Water, 35, 42 (2007); doi:10.1002/clen.200600015.
- M. Matzke, S. Stolte, J. Arning, U. Uebers and J. Filser, Green Chem., 10, 584 (2008); doi:10.1039/b717811e.
- N.V. Plechkova and K.R. Seddon, Methods and Reagents for Green Chemistry, Wiley, New York, pp. 105-130 (2007).
- P.G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim (1999).
- E.J. Beckman, J. Supercrit. Fluids, 28, 121 (2004); doi:10.1016/S0896-8446(03)00029-9.
- H.R. Hobbs and N.R. Thomas, Chem. Rev., 107, 2786 (2007); doi:10.1021/cr0683820.
- M.N. Varma and G. Madras, Appl. Biochem. Biotechnol., 160, 2342 (2010); doi:10.1007/s12010-009-8696-7.
- Z. Knez, S. Kavčič, L. Gubicza, K. Bélafi-Bakó, G. Németh, M. Primožič and M. Habulin, J. Supercrit. Fluids, 66, 192 (2012); doi:10.1016/j.supflu.2011.11.006.
- H. Shekarchizadeh and M. Kadivar, Food Chem., 135, 155 (2012); doi:10.1016/j.foodchem.2012.04.033.
- M.T. Reetz, W. Wiesenhöfer, G. Franciò and W. Leitner, Chem. Commun., 992 (2002); doi:10.1039/b202322a.
- P. Lozano, T. Diego, D. Carrié, M. Vaultier and J.L. Iborra, Chem. Commun., 692 (2002); doi:10.1039/b200055e.
- M.D. Bermejo, A.J. Kotlewska, L.J. Florusse, M.J. Cocero, F. van Rantwijk and C.J. Peters, Green Chem., 10, 1049 (2008); doi:10.1039/b805011b.
- J. Lai, Z. Hu, P. Wang and Z. Yang, Fuel, 95, 329 (2012); doi:10.1016/j.fuel.2011.11.001.
References
R.K. Saxena, P.K. Ghosh, R. Gupta, W.S. Davidson, S. Bradoo and R. Gulati, Curr. Sci., 77, 101 (1999).
M.B.A. Rahman, D. Krishnan, M.J. Haron, B.A. Tejo, E. Abdulmalek, A.B. Salleh and M. Basri, Asian J. Chem., 25, 3014 (2013); doi:10.14233/ajchem.2013.13492.
C. Bidjou-Haiour and N. Klai, Asian J. Chem., 25, 4347 (2013); doi:10.14233/ajchem.2013.13973.
W. Gerhartz, Enzymes in Industry, Production and Application, VCH, Weinheim (1990).
F.G. Priest, Synthesis and Secretion of Extracellular Enzymes, In: Microbial Degradation of Natural Products, Academic Press, New York, edn 2 (1992).
Z.Q. Duan, W. Du and D.H. Liu, Bioresour. Technol., 102, 11048 (2011); doi:10.1016/j.biortech.2011.09.003.
M. Filice, J.M. Guisan and J.M. Palomo, Green Chem., 12, 1365 (2010); doi:10.1039/c003829f.
P. Mander, S.S. Cho, J.R. Simkhada, Y.H. Choi, D.J. Park and J.C. Yoo, Process Biochem., 47, 635 (2012); doi:10.1016/j.procbio.2012.01.003.
Y. Xia, J. Liu, J. Liu and B. Yu, Bioorg. Med. Chem. Lett., 22, 3100 (2012); doi:10.1016/j.bmcl.2012.03.066.
M. Therisod and A.M. Klibanov, J. Am. Chem. Soc., 109, 3977 (1987); doi:10.1021/ja00247a024.
X. Li and L.T. Kanerva, Org. Lett., 8, 5593 (2006); doi:10.1021/ol0623163.
M. Päiviö, P. Perkiö and L.T. Kanerva, Tetrahedron Asymm., 23, 230 (2012); doi:10.1016/j.tetasy.2012.02.008.
Y. Lai, H. Zheng, S. Chai, P. Zhang and X. Chen, Green Chem., 12, 1917 (2010); doi:10.1039/c004547k.
S. Chai, Y. Lai, J. Xu, H. Zheng, Q. Zhu and P. Zhang, Adv. Synth. Catal., 353, 371 (2011); doi:10.1002/adsc.201000523.
J.C. Xu, W.M. Li, H. Zheng, Y.F. Lai and P.F. Zhang, Tetrahedron, 67, 9582 (2011); doi:10.1016/j.tet.2011.09.137.
H. Zheng, Q.Y. Shi, K. Du, Y.J. Mei and P.F. Zhang, Catal. Lett., 143, 118 (2013); doi:10.1007/s10562-012-0920-3.
P. Lozano, Green Chem., 12, 555 (2010); doi:10.1039/b919088k.
J.H. Clark and S.J. Tavener, Org. Process Res. Dev., 11, 149 (2007); doi:10.1021/op060160g.
I. Horvath and J. Rabai, Science, 266, 72 (1994); doi:10.1126/science.266.5182.72.
B.-J. Deelman, in eds.: J. A. Gladysz, D. P. Curran, I. T. Horváth, Handbook of Fluorous Chemistry, Adv. Synth. Catal., 347, 1451 (2005); doi:10.1002/adsc.200505124.
H.R. Hobbs, H.M. Kirke, M. Poliakoff and N.R. Thomas, Angew. Chem. Int. Ed. Engl., 46, 7860 (2007); doi:10.1002/anie.200701488.
S. Shipovskov, Biotechnol. Prog., 24, 1262 (2008); doi:10.1002/btpr.37.
B. Hungerhoff, H. Sonnenschein and F. Theil, Angew. Chem. Int. Ed., 40, 2492 (2001); doi:10.1002/1521-3773(20010702)40:13<2492::AID-ANIE2492>3.0.CO;2-8.
P. Beier and D. O’Hagan, Chem. Commun., 1680 (2002); doi:10.1039/b204607p.
Z. Luo, S.M. Swaleh, F. Theil and D.P. Curran, Org. Lett., 4, 2585 (2002); doi:10.1021/ol026232f.
T. Maruyama, T. Kotani, H. Yamamura, N. Kamiya and M. Goto, Org. Biomol. Chem., 2, 524 (2004); doi:10.1039/b312212c.
A. Hafiidz, M. Fauzi, N. Aishah and S. Amin, Renew. Sustain. Energy Rev., 16, 5770 (2012); doi:10.1016/j.rser.2012.06.022.
T. Welton, Chem. Rev., 99, 2071 (1999); doi:10.1021/cr980032t.
M.J. Earle, J.M.S.S. Esperança, M.A. Gilea, J.N. Canongia Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon and J.A. Widegren, Nature, 439, 831 (2006); doi:10.1038/nature04451.
K.R. Seddon, Nat. Mater., 2, 363 (2003); doi:10.1038/nmat907.
M.G. Freire, A.F.M. Cláudio, J.M.M. Araújo, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes and L.P.N. Rebelo, Chem. Soc. Rev., 41, 4966 (2012); doi:10.1039/c2cs35151j.
S. Tang, G.A. Baker and H. Zhao, Chem. Soc. Rev., 41, 4030 (2012); doi:10.1039/c2cs15362a.
F.J. Hernández-Fernández, A.P. de los Ríos, L.J. Lozano-Blanco and C. Godínez, J. Chem. Technol. Biotechnol., 85, 1423 (2010); doi:10.1002/jctb.2453.
S.P. Ventura, L.D. Santos, J.A. Saraiva and J.A. Coutinho, World J. Microbiol. Biotechnol., 28, 2303 (2012); doi:10.1007/s11274-012-1037-y.
P. Lozano, J.M. Bernal and A. Navarro, Green Chem., 14, 3026 (2012); doi:10.1039/c2gc36081k.
A.P. de los Ríos, F.J. Hernández Fernández, D. Gómez, M. Rubio and G. Víllora, Sep. Sci. Technol., 47, 300 (2012); doi:10.1080/01496395.2011.631961.
H.S. Kim and Y.-M. Koo, J. Korean Chem. Eng., 29, 1610 (2012); doi:10.1007/s11814-012-0043-y.
N. Byrne and C.A. Angell, J. Mol. Biol., 378, 707 (2008); doi:10.1016/j.jmb.2008.02.050.
T.O. Akanbi, C.J. Barrow and N. Byrne, Catal. Sci. Technol., 2, 1839 (2012); doi:10.1039/c2cy20392h.
A.P. de los Ríos, F. van Rantwijk and R.A. Sheldon, Green Chem., 14, 1584 (2012); doi:10.1039/c2gc35196j.
A. Abbott, US Patent 7,183,143 (2007).
D. Zhao, Y. Liao and Z. Zhang, Clean Soil Air Water, 35, 42 (2007); doi:10.1002/clen.200600015.
M. Matzke, S. Stolte, J. Arning, U. Uebers and J. Filser, Green Chem., 10, 584 (2008); doi:10.1039/b717811e.
N.V. Plechkova and K.R. Seddon, Methods and Reagents for Green Chemistry, Wiley, New York, pp. 105-130 (2007).
P.G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim (1999).
E.J. Beckman, J. Supercrit. Fluids, 28, 121 (2004); doi:10.1016/S0896-8446(03)00029-9.
H.R. Hobbs and N.R. Thomas, Chem. Rev., 107, 2786 (2007); doi:10.1021/cr0683820.
M.N. Varma and G. Madras, Appl. Biochem. Biotechnol., 160, 2342 (2010); doi:10.1007/s12010-009-8696-7.
Z. Knez, S. Kavčič, L. Gubicza, K. Bélafi-Bakó, G. Németh, M. Primožič and M. Habulin, J. Supercrit. Fluids, 66, 192 (2012); doi:10.1016/j.supflu.2011.11.006.
H. Shekarchizadeh and M. Kadivar, Food Chem., 135, 155 (2012); doi:10.1016/j.foodchem.2012.04.033.
M.T. Reetz, W. Wiesenhöfer, G. Franciò and W. Leitner, Chem. Commun., 992 (2002); doi:10.1039/b202322a.
P. Lozano, T. Diego, D. Carrié, M. Vaultier and J.L. Iborra, Chem. Commun., 692 (2002); doi:10.1039/b200055e.
M.D. Bermejo, A.J. Kotlewska, L.J. Florusse, M.J. Cocero, F. van Rantwijk and C.J. Peters, Green Chem., 10, 1049 (2008); doi:10.1039/b805011b.
J. Lai, Z. Hu, P. Wang and Z. Yang, Fuel, 95, 329 (2012); doi:10.1016/j.fuel.2011.11.001.