Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Two Scalable Industrial Process for Cinchona Alkaloid Catalyst Recovery: Application to the Large-Scale Production of (+)-Biotin
Corresponding Author(s) : Fei Xiong
Asian Journal of Chemistry,
Vol. 26 No. 12 (2014): Vol 26 Issue 12
Abstract
Two scalable chemical processes for the cinchona alkaloid catalyst recovery were demonstrated. In the first approach, the organocatalyst quinine was removed first as the neutral tartrate from alcohol, one recrystallization giving pure salt. Quinine was then recovered in 95 % yield by basification of its aqueous tartrate salt and could be reused without any further purification. In the second approach, the pure quinine catalyst could be easily obtained in almost quantitative yield and with 99 % chemical purity after a single recrystallization from toluene and its spectral data (1H NMR and the value of specific rotation) were in agreement with those of the literature previously reported. The methods are versatile and applicable for industrial-scale synthesis of biologically relevant substance (+)-biotin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.J. De Clercq, Chem. Rev., 97, 1755 (1997); doi:10.1021/cr950073e.
- M. Seki, Med. Res. Rev., 26, 434 (2006); doi:10.1002/med.20058.
- Z. Zhong, X.F. Wu and F.E. Chen, Chin. J. Org. Chem., 32, 1792 (2012); doi:10.6023/cjoc1203041.
- P.S. Mistry and K. Dakshinamurti, Vitam. Horm., 22, 1 (1964); doi:10.1016/S0083-6729(08)60335-0.
- C.C. Whitehead, Ann. N. Y. Acad. Sci., 447(1 Biotin), 86 (1985); doi:10.1111/j.1749-6632.1985.tb18427.x.
- M. Maebashi, Y. Makino, Y. Furukawa, K. Ohinata, S. Kimura and T. Sato, J. Clin. Biochem. Nutr., 14, 211 (1993); doi:10.3164/jcbn.14.211.
- W. Bonrath and T. Netscher, Appl. Catal. A, 280, 55 (2005); doi:10.1016/j.apcata.2004.08.028.
- J. Huang, F. Xiong and F.E. Chen, Tetrahedron Asymm., 19, 1436 (2008); doi:10.1016/j.tetasy.2008.05.020.
- H.F. Dai, W.X. Chen, L. Zhao, F. Xiong, H. Sheng and F.E. Chen, Adv. Synth. Catal., 350, 1635 (2008); doi:10.1002/adsc.200800151.
- F. Xiong, X.X. Chen and F.E. Chen, Tetrahedron Asymm., 21, 665 (2010); doi:10.1016/j.tetasy.2010.03.041.
- X.X. Chen, F. Xiong, H. Fu, Z.Q. Liu and F.E. Chen, Chem. Pharm. Bull. (Tokyo), 59, 488 (2011); doi:10.1248/cpb.59.488.
- F. Xiong, F.J. Xiong, W.X. Chen, H. Q. Jia and F.E. Chen, J. Heterocycl. Chem., 50, 1078 (2013); doi:10.1002/jhet.1512.
- I.T. Raheem, S.N. Goodman and E.N. Jacobsen, J. Am. Chem. Soc., 126, 706 (2004); doi:10.1021/ja039550y.
References
P.J. De Clercq, Chem. Rev., 97, 1755 (1997); doi:10.1021/cr950073e.
M. Seki, Med. Res. Rev., 26, 434 (2006); doi:10.1002/med.20058.
Z. Zhong, X.F. Wu and F.E. Chen, Chin. J. Org. Chem., 32, 1792 (2012); doi:10.6023/cjoc1203041.
P.S. Mistry and K. Dakshinamurti, Vitam. Horm., 22, 1 (1964); doi:10.1016/S0083-6729(08)60335-0.
C.C. Whitehead, Ann. N. Y. Acad. Sci., 447(1 Biotin), 86 (1985); doi:10.1111/j.1749-6632.1985.tb18427.x.
M. Maebashi, Y. Makino, Y. Furukawa, K. Ohinata, S. Kimura and T. Sato, J. Clin. Biochem. Nutr., 14, 211 (1993); doi:10.3164/jcbn.14.211.
W. Bonrath and T. Netscher, Appl. Catal. A, 280, 55 (2005); doi:10.1016/j.apcata.2004.08.028.
J. Huang, F. Xiong and F.E. Chen, Tetrahedron Asymm., 19, 1436 (2008); doi:10.1016/j.tetasy.2008.05.020.
H.F. Dai, W.X. Chen, L. Zhao, F. Xiong, H. Sheng and F.E. Chen, Adv. Synth. Catal., 350, 1635 (2008); doi:10.1002/adsc.200800151.
F. Xiong, X.X. Chen and F.E. Chen, Tetrahedron Asymm., 21, 665 (2010); doi:10.1016/j.tetasy.2010.03.041.
X.X. Chen, F. Xiong, H. Fu, Z.Q. Liu and F.E. Chen, Chem. Pharm. Bull. (Tokyo), 59, 488 (2011); doi:10.1248/cpb.59.488.
F. Xiong, F.J. Xiong, W.X. Chen, H. Q. Jia and F.E. Chen, J. Heterocycl. Chem., 50, 1078 (2013); doi:10.1002/jhet.1512.
I.T. Raheem, S.N. Goodman and E.N. Jacobsen, J. Am. Chem. Soc., 126, 706 (2004); doi:10.1021/ja039550y.