Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Modification of SiO2 Thin Film Surface Morphology and Its Electrical Performance
Corresponding Author(s) : Xiang Liu
Asian Journal of Chemistry,
Vol. 26 No. 12 (2014): Vol 26 Issue 12
Abstract
Silicon dioxide thin film was prepared by thermal growth method and PMMA film layer was prepared by spin coating. Silane coupling agent octadecyltrichlorosilane (OTS) be used to modified the surface of SiO2. The result of atomic force microscope (AFM) showed that using PMMA and OTS modified SiO2 layer can effectively improve the surface flatness and reduce the surface energy. The PMMA insulating layer reduces the contact barrier between the organic semiconductor insulating layer and the growth of thin films of copper phthalocyanin became more consistent. Compare with the single SiO2 insulation layer, thin film transistor devices on SiO2/PMMA and SiO2/OTS compound insulation layer with improved carrier mobility and lower threshold voltage. Experimental results showed that using double insulation layer structure can effectively improve the performance of organic thin film transistor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kim, T.H. Kwak, M.Y. Cho, J.W. Lee and J. Joo, Synth. Met., 158, 553 (2008); doi:10.1016/j.synthmet.2008.03.028.
- J. Puigdollers, C. Voz, M. Fonrodona, S. Cheylan, M. Stella, J. Andreu, M. Vetter and R. Alcubilla, J. Non-Cryst. Solids, 352, 1778 (2006); doi:10.1016/j.jnoncrysol.2005.10.063.
- Y. Noguchi, T. Sekitani and T. Someya, Appl. Phys. Lett., 89, 253507 (2006); doi:10.1063/1.2416001.
- H.E.A. Huitema, G.H. Gelinck, J.B.P.H. van der Putten, K.E. Kuijk, C.M. Hart, E. Cantatore, P.T. Herwig, A.J.J.M. van Breemen and D.M. de Leeuw, Nature, 414, 599 (2001); doi:10.1038/414599a.
- C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater., 14, 99 (2002); doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
- B. Crone, A. Dodabalapur, Y.-Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz and W. Li, Nature, 403, 521 (2000); doi:10.1038/35000530.
- C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl and J. West, Appl. Phys. Lett., 80, 1088 (2002); doi:10.1063/1.1448659.
- T.W. Kelley, L.D. Boardman, T.D. Dunbar, D.V. Muyres, M.J. Pellerite and T.P. Smith, J. Phys. Chem. B, 107, 5877 (2003); doi:10.1021/jp034352e.
- K.T. Gon. T.G. Kim, E.H. Jeong, S.C. Lim, S.H. Kim, G.H. Kim, S.H. Kim, H.-Y. Jeon and J.H. Youk, Synth. Met., 159, 749 (2009); doi:10.1016/j.synthmet.2008.11.027.
- B. Insung. I. Bae, S.J. Kang, Y.J. Park, T. Furukawa and C. Park, Curr. Appl. Phys., 10, e54 (2010); doi:10.1016/j.cap.2009.12.013.
- S.H. Deshmukh, D.K. Burghate and S.N. Shilaskar, Indian J. Pure Appl. Phys., 46, 344 (2008).
- D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth and M. Berggren, Adv. Mater., 14, 51 (2002); doi:10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-#.
- A. Basu and M. Mohsin, Indian J. Pure Appl. Phys., 48, 899 (2010).
- K. Xiao, Y. Liu, Y. Guo, G. Yu, L. Wan and D. Zhu, Appl. Phys., A Mater. Sci. Process., 80, 1541 (2003); doi: 10.1007/s00339-003-2398-8.
- J.D. Zhang, J. Wang, H.B. Wang and D. Yan, Appl. Phys. Lett., 84, 142 (2004); doi:10.1063/1.1638634.
- J.F. Yuan, J.D. Zhang, J. Wang, X. Yan, D. Yan and W. Xu, Appl. Phys. Lett., 82, 3967 (2003); doi:10.1063/1.1580646.
References
K. Kim, T.H. Kwak, M.Y. Cho, J.W. Lee and J. Joo, Synth. Met., 158, 553 (2008); doi:10.1016/j.synthmet.2008.03.028.
J. Puigdollers, C. Voz, M. Fonrodona, S. Cheylan, M. Stella, J. Andreu, M. Vetter and R. Alcubilla, J. Non-Cryst. Solids, 352, 1778 (2006); doi:10.1016/j.jnoncrysol.2005.10.063.
Y. Noguchi, T. Sekitani and T. Someya, Appl. Phys. Lett., 89, 253507 (2006); doi:10.1063/1.2416001.
H.E.A. Huitema, G.H. Gelinck, J.B.P.H. van der Putten, K.E. Kuijk, C.M. Hart, E. Cantatore, P.T. Herwig, A.J.J.M. van Breemen and D.M. de Leeuw, Nature, 414, 599 (2001); doi:10.1038/414599a.
C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater., 14, 99 (2002); doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
B. Crone, A. Dodabalapur, Y.-Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz and W. Li, Nature, 403, 521 (2000); doi:10.1038/35000530.
C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl and J. West, Appl. Phys. Lett., 80, 1088 (2002); doi:10.1063/1.1448659.
T.W. Kelley, L.D. Boardman, T.D. Dunbar, D.V. Muyres, M.J. Pellerite and T.P. Smith, J. Phys. Chem. B, 107, 5877 (2003); doi:10.1021/jp034352e.
K.T. Gon. T.G. Kim, E.H. Jeong, S.C. Lim, S.H. Kim, G.H. Kim, S.H. Kim, H.-Y. Jeon and J.H. Youk, Synth. Met., 159, 749 (2009); doi:10.1016/j.synthmet.2008.11.027.
B. Insung. I. Bae, S.J. Kang, Y.J. Park, T. Furukawa and C. Park, Curr. Appl. Phys., 10, e54 (2010); doi:10.1016/j.cap.2009.12.013.
S.H. Deshmukh, D.K. Burghate and S.N. Shilaskar, Indian J. Pure Appl. Phys., 46, 344 (2008).
D. Nilsson, M. Chen, T. Kugler, T. Remonen, M. Armgarth and M. Berggren, Adv. Mater., 14, 51 (2002); doi:10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-#.
A. Basu and M. Mohsin, Indian J. Pure Appl. Phys., 48, 899 (2010).
K. Xiao, Y. Liu, Y. Guo, G. Yu, L. Wan and D. Zhu, Appl. Phys., A Mater. Sci. Process., 80, 1541 (2003); doi: 10.1007/s00339-003-2398-8.
J.D. Zhang, J. Wang, H.B. Wang and D. Yan, Appl. Phys. Lett., 84, 142 (2004); doi:10.1063/1.1638634.
J.F. Yuan, J.D. Zhang, J. Wang, X. Yan, D. Yan and W. Xu, Appl. Phys. Lett., 82, 3967 (2003); doi:10.1063/1.1580646.