Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Stable Nano-Micelles Made of Casein and Keratin Through Self-Assembly
Corresponding Author(s) : Hong-Ru Wang
Asian Journal of Chemistry,
Vol. 26 No. 12 (2014): Vol 26 Issue 12
Abstract
Nano-micelles made of casein and keratin were produced through self-assembly, the complex micelles were fixed by transglutaminase and became stable. The method for preparing the complex nano-micelles proved to be harmless and green. The nano-micelles behaviour and properties has been investigated in the pH ranges of 5-9. Turbidity measurements, dynamic light scattering, fluorescence measurement, transmission electron and atomic force microscopy studies revealed that the complex nano-micelles have a unique morphology. Their hydrodynamic diameters depend on their behavior under different pH value and mass ratio. The complex nano-micelles had a more stable feature than the casein micelles and can be used to develop environmentally friendly coatings or other biomass materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.X. Qi, E.D. Wickham and H.M. Farrell Jr., The Protein J., 23, 389(2004); doi:10.1023/B:JOPC.0000039553.66233.3f.
- M.H. Alaimo, H.M. Farrell Jr. and M.W. Germann, Biochim. Biophys. Acta, 1431, 410 (1999); doi:10.1016/S0167-4838(99)00061-8.
- H.M. Farrell, P.X. Qi and V.N. Uversky, New View of Protein Structure: Implications for Potential New Structure-Function Relationships: Protein Structure and Functionality, ACS Symposium Book Series 935, Washington, DC, pp. 1-18 (2006).
- V.N. Uversky, J.R. Gillespie and A.L. Fink, Proteins, 41, 415 (2000); doi:10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7.
- V.N. Uversky, Eur. J. Biochem., 269, 2 (2002); doi:10.1046/j.0014-2956.2001.02649.x.
- T.F. Kumosinski, H. Pessen, H.M. Farrell Jr. and H. Brumberger, Arch. Biochem. Biophys., 266, 548 (1988); doi:10.1016/0003-9861(88)90288-3.
- K. Kanazawa, US Patent 20100143424 (2010).
- M.C.A. Griffin, R.L.J. Lyster and J.C. Price, Eur. J. Biochem., 174, 339 (1988); doi:10.1111/j.1432-1033.1988.tb14103.x.
- J.A. Lucey, C. Dick, H. Singh and P.A. Munro, Milchwissenschaft, 52, 603 (1997).
- A. Madadlou, M.E. Mousavi, Z. Emam-Djomeh, D. Sheehan and M. Ehsani, Food Chem., 116, 929 (2009); doi:10.1016/j.foodchem.2009.03.048.
- Y. Liu and R. Guo, Biophys. Chem., 136, 67 (2008); doi:10.1016/j.bpc.2008.03.012.
- X. Pan, S. Yu, P. Yao and Z. Shao, J. Colloid Interf. Sci., 316, 405 (2007); doi:10.1016/j.jcis.2007.09.007.
- C. Tonin, A. Aluigi, C. Vineis, A. Varesano, A. Montarsolo and F. Ferrero, J. Therm. Anal. Calorim., 89, 601 (2007); doi:10.1007/s10973-006-7557-7.
- M. van de Locht, Melliand Textilberichte, 10, 780 (1987).
- P.M. Steinert and M.I. Gullino, Biochem. Biophys. Res. Commun., 70, 221 (1976); doi:10.1016/0006-291X(76)91131-1.
- H. Thomas, A. Conrads, K.-H. Phan, M. van de Löcht and H. Zahn, Int. J. Biol. Macromol., 8, 258 (1986); doi:10.1016/0141-8130(86)90038-3.
- F. Ikkai and S. Naito, Biomacromolecules, 3, 482 (2002); doi:10.1021/bm010160i.
- K. Seguro, Transglutaminase, Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation; Wiley, New York (1999).
- E. Lefebvre-Cases, E. Gastaldi and B. Tarodo de la Fuente, Colloids Surf. B, 11, 281 (1998); doi:10.1016/S0927-7765(98)00054-X.
- C. Keyes-Baig, J. Duhamel, S.-Y. Fung, J. Bezaire and P. Chen, J. Am. Chem. Soc., 126, 7522 (2004); doi:10.1021/ja0381297.
- J.S. Li, Y. Li, L. Li, A.F.T. Mak, F. Ko and L. Qin, Polym. Degrad. Stab., 94, 1800 (2009); doi:10.1016/j.polymdegradstab.2009.06.004.
References
P.X. Qi, E.D. Wickham and H.M. Farrell Jr., The Protein J., 23, 389(2004); doi:10.1023/B:JOPC.0000039553.66233.3f.
M.H. Alaimo, H.M. Farrell Jr. and M.W. Germann, Biochim. Biophys. Acta, 1431, 410 (1999); doi:10.1016/S0167-4838(99)00061-8.
H.M. Farrell, P.X. Qi and V.N. Uversky, New View of Protein Structure: Implications for Potential New Structure-Function Relationships: Protein Structure and Functionality, ACS Symposium Book Series 935, Washington, DC, pp. 1-18 (2006).
V.N. Uversky, J.R. Gillespie and A.L. Fink, Proteins, 41, 415 (2000); doi:10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7.
V.N. Uversky, Eur. J. Biochem., 269, 2 (2002); doi:10.1046/j.0014-2956.2001.02649.x.
T.F. Kumosinski, H. Pessen, H.M. Farrell Jr. and H. Brumberger, Arch. Biochem. Biophys., 266, 548 (1988); doi:10.1016/0003-9861(88)90288-3.
K. Kanazawa, US Patent 20100143424 (2010).
M.C.A. Griffin, R.L.J. Lyster and J.C. Price, Eur. J. Biochem., 174, 339 (1988); doi:10.1111/j.1432-1033.1988.tb14103.x.
J.A. Lucey, C. Dick, H. Singh and P.A. Munro, Milchwissenschaft, 52, 603 (1997).
A. Madadlou, M.E. Mousavi, Z. Emam-Djomeh, D. Sheehan and M. Ehsani, Food Chem., 116, 929 (2009); doi:10.1016/j.foodchem.2009.03.048.
Y. Liu and R. Guo, Biophys. Chem., 136, 67 (2008); doi:10.1016/j.bpc.2008.03.012.
X. Pan, S. Yu, P. Yao and Z. Shao, J. Colloid Interf. Sci., 316, 405 (2007); doi:10.1016/j.jcis.2007.09.007.
C. Tonin, A. Aluigi, C. Vineis, A. Varesano, A. Montarsolo and F. Ferrero, J. Therm. Anal. Calorim., 89, 601 (2007); doi:10.1007/s10973-006-7557-7.
M. van de Locht, Melliand Textilberichte, 10, 780 (1987).
P.M. Steinert and M.I. Gullino, Biochem. Biophys. Res. Commun., 70, 221 (1976); doi:10.1016/0006-291X(76)91131-1.
H. Thomas, A. Conrads, K.-H. Phan, M. van de Löcht and H. Zahn, Int. J. Biol. Macromol., 8, 258 (1986); doi:10.1016/0141-8130(86)90038-3.
F. Ikkai and S. Naito, Biomacromolecules, 3, 482 (2002); doi:10.1021/bm010160i.
K. Seguro, Transglutaminase, Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation; Wiley, New York (1999).
E. Lefebvre-Cases, E. Gastaldi and B. Tarodo de la Fuente, Colloids Surf. B, 11, 281 (1998); doi:10.1016/S0927-7765(98)00054-X.
C. Keyes-Baig, J. Duhamel, S.-Y. Fung, J. Bezaire and P. Chen, J. Am. Chem. Soc., 126, 7522 (2004); doi:10.1021/ja0381297.
J.S. Li, Y. Li, L. Li, A.F.T. Mak, F. Ko and L. Qin, Polym. Degrad. Stab., 94, 1800 (2009); doi:10.1016/j.polymdegradstab.2009.06.004.