Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Multi-Scale Analysis Between Microstructure and Absorbing Performance of Thermal Sprayed Fe-(SiC-SiO2) Coatings
Corresponding Author(s) : Xiaojing Yuan
Asian Journal of Chemistry,
Vol. 26 No. 11 (2014): Vol 26 Issue 11
Abstract
Based on the characteristics of thermal sprayed particle, the fractal model was characterized the thermal sprayed composite absorber coatings and the mathematical model was established. The volume fraction of the absorber coatings was calculated with fractal dimension. Then, the coatings thickness and the interface can be analyzed for the microwave reflectivity coefficient. With the model, the effective permittivity and permeability of the nano-scales Fe-(SiC-SiO2) composite coating was calculated and measured. The result shows that when the mass fraction of the nano SiC is 28 wt %, the coatings fractal dimension is 2.55081 and the volume fraction coefficient is 0.02423. The relationship between microstructure and performance of coatings were founded with the developed effective medium theory. The experiment result show that the coatings reflectivity coefficient of the coatings is distribute -2 to -14 dB.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yuan, H. Wang, B. Zha, G. Hou and P. Hou, Surf. Coat. Technol., 201, 7130 (2007); doi:10.1016/j.surfcoat.2007.01.026.
- C.-J. Li and A. Ohmori, J. Thermal Spray Technol., 11, 365 (2002); doi:10.1361/105996302770348754.
- T. Sahraoui, S. Guessasma, M. Ali Jeridane and M. Hadji, Mater. Des., 31, 1431 (2010); doi:10.1016/j.matdes.2009.08.037.
- K.W. Yu, Phys. Rev. B, 49, 9989 (1994); doi:10.1103/PhysRevB.49.9989.
- T.S. Choy and K.W. Yu, Phys. Rev. B, 52, 3341 (1995); doi:10.1103/PhysRevB.52.3341.
- A.V. Dyskin, Int. J. Solids Struct., 42, 477 (2005); doi:10.1016/j.ijsolstr.2004.06.034.
- L. Jylhä and A. Sihvola, J. Phys. D Appl. Phys., 40, 4966 (2007); doi:10.1088/0022-3727/40/16/032.
References
X. Yuan, H. Wang, B. Zha, G. Hou and P. Hou, Surf. Coat. Technol., 201, 7130 (2007); doi:10.1016/j.surfcoat.2007.01.026.
C.-J. Li and A. Ohmori, J. Thermal Spray Technol., 11, 365 (2002); doi:10.1361/105996302770348754.
T. Sahraoui, S. Guessasma, M. Ali Jeridane and M. Hadji, Mater. Des., 31, 1431 (2010); doi:10.1016/j.matdes.2009.08.037.
K.W. Yu, Phys. Rev. B, 49, 9989 (1994); doi:10.1103/PhysRevB.49.9989.
T.S. Choy and K.W. Yu, Phys. Rev. B, 52, 3341 (1995); doi:10.1103/PhysRevB.52.3341.
A.V. Dyskin, Int. J. Solids Struct., 42, 477 (2005); doi:10.1016/j.ijsolstr.2004.06.034.
L. Jylhä and A. Sihvola, J. Phys. D Appl. Phys., 40, 4966 (2007); doi:10.1088/0022-3727/40/16/032.