Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Crystal Structure of 4,7-Dioxo-7-phenylheptanoic Acid
Corresponding Author(s) : Kai Wang
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
4,7-Dioxo-7-phenylheptanoic acid was synthesized from acetophenone and furfural. Firstly, acetophenone reacted with furfural in the presence of sodium hydroxide at room temperature, then the product of the first step was transformed into 4,7-dioxo-7-phenylheptanoic by the process of hydrolyzation by using acetic acid and hydrochloric acid. The product was characterized by 1H NMR and LC-MS. The crystal structure of compound 1 was investigated using X-ray diffraction and SHELXTL-97 software and it was first reported here. The result indicated that compound 1 crystallized in the monoclinic system, space group P2(1)/c with a = 5.3007 (14), b = 28.405 (8), c = 7.679(2) Å, V = 1130.4 (5) Å3; Z 4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhao and E.M. Carreira, J. Am. Chem. Soc., 124, 1582 (2002); doi:10.1021/ja017291b.
- M.N. Chaur, D. Collado and J.-M. Lehn, Chem. Eur. J., 17, 248 (2011); doi:10.1002/chem.201002308.
- F.M. Raymo and M. Tomasulo, Chem. Eur. J., 12, 3186 (2006); doi:10.1002/chem.200501178.
- J.C. Crano, T. Flood, D. Knowles, A. Kumar and B. Van Gemert, Pure Appl. Chem., 68, 1395 (1996); doi:10.1351/pac199668071395.
- C.D. Gabbutt, B.M. Heron, A.C. Instone, P.N. Horton and M.B. Hursthouse, Tetrahedron, 61, 463 (2005); doi:10.1016/j.tet.2004.10.069.
- S. Hatakeyama, N. Ochi, H. Numata and S. Takano, J. Chem. Soc. Chem. Commun., 17, 1202 (1988); doi:10.1039/c39880001202.
- M.S. Greenblatt, W.P. Bennett, M. Hollstein and C.C. Harris, Cancer Res., 54, 4855 (1994).
- J. Kuthan, P. Sebek and S. Bohm, Advances in Heterocyclic Chemistry, Academic Press, Inc., New York, vol. 62, p. 19 (1995).
- C.D. Gabbutt, B.M. Heron, A.C. Instone, D.A. Thomas, S.M. Partington, M.B. Hursthouse and T. Gelbrich, Eur. J. Org. Chem., 1220 (2003); doi:10.1002/ejoc.200390176.
- B.V. Gemert, M. Bergomi and D. Knowles, Mol. Cryst. Liq. Cryst. Sci. Technol., 246A, 67 (1994); doi:10.1080/10587259408037790.
References
W. Zhao and E.M. Carreira, J. Am. Chem. Soc., 124, 1582 (2002); doi:10.1021/ja017291b.
M.N. Chaur, D. Collado and J.-M. Lehn, Chem. Eur. J., 17, 248 (2011); doi:10.1002/chem.201002308.
F.M. Raymo and M. Tomasulo, Chem. Eur. J., 12, 3186 (2006); doi:10.1002/chem.200501178.
J.C. Crano, T. Flood, D. Knowles, A. Kumar and B. Van Gemert, Pure Appl. Chem., 68, 1395 (1996); doi:10.1351/pac199668071395.
C.D. Gabbutt, B.M. Heron, A.C. Instone, P.N. Horton and M.B. Hursthouse, Tetrahedron, 61, 463 (2005); doi:10.1016/j.tet.2004.10.069.
S. Hatakeyama, N. Ochi, H. Numata and S. Takano, J. Chem. Soc. Chem. Commun., 17, 1202 (1988); doi:10.1039/c39880001202.
M.S. Greenblatt, W.P. Bennett, M. Hollstein and C.C. Harris, Cancer Res., 54, 4855 (1994).
J. Kuthan, P. Sebek and S. Bohm, Advances in Heterocyclic Chemistry, Academic Press, Inc., New York, vol. 62, p. 19 (1995).
C.D. Gabbutt, B.M. Heron, A.C. Instone, D.A. Thomas, S.M. Partington, M.B. Hursthouse and T. Gelbrich, Eur. J. Org. Chem., 1220 (2003); doi:10.1002/ejoc.200390176.
B.V. Gemert, M. Bergomi and D. Knowles, Mol. Cryst. Liq. Cryst. Sci. Technol., 246A, 67 (1994); doi:10.1080/10587259408037790.