Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper Nanoparticles: Substituted Catalysts of Expensive Platinum for Methanol Oxidation
Corresponding Author(s) : Hongxiao Zhao
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
This work presents copper nanoparticles as substituted electrocatalysts for oxidation of methanol. Copper nanoparticles were successfully synthesized by a simple electrochemical method and then were characterized by X-ray diffraction and scanning electron microscope. The electrocatalytic properties of the methanol oxidation at this material on the kryptol substrate was investigated at room temperature using cyclic voltammetry, electrochemical impedance spectroscopy and current density-time experiment. The results revealed that copper catalysts presented attractively electrocatalytic activity for methanol oxidation reaction (MOR). Owing to lower production costs of copper, the reported nanostructured copper catalyst is a promising electrode material for direct methanol fuel cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Velázquez-Palenzuela, F. Centellas, J.A. Garrido, C. Arias, R.M. Rodríguez, E. Brillas and P.L. Cabot, J. Power Sources, 196, 3503 (2011); doi:10.1016/j.jpowsour.2010.12.044.
- A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio and M.T.M. Koper, Electrochem. Commun., 13, 466 (2011); doi:10.1016/j.elecom.2011.02.022.
- H. Zhang, X.Q. Xu, P. Gu, C.Y. Li, P. Wu and C.X. Cai, Electrochim. Acta, 56, 7064 (2011); doi:10.1016/j.electacta.2011.05.118.
- H.J. Ahn and D.Y. Wang, Solid State Sci., 13, 1612 (2011); doi:10.1016/j.solidstatesciences.2011.06.011.
- Y.Y. Xu, Y.N. Dong, J. Shi, M.L. Xu, Z.F. Zhang and X.K. Yang, Catal. Commun., 13, 54 (2011); doi:10.1016/j.catcom.2011.06.018.
- I.J. Hsu, D.V. Esposito, E.G. Mahoney, A. Black and J.G.G. Chen, J. Power Sources, 196, 8307 (2011); doi:10.1016/j.jpowsour.2011.06.043.
- S.K. Cui and D.J. Guo, J. Colloid Interf. Sci., 333, 300 (2009); doi:10.1016/j.jcis.2009.01.067.
- D.J. Guo, X.P. Qiu, L.Q. Chen and W.T. Zhu, Carbon, 47, 1680 (2009); doi:10.1016/j.carbon.2009.02.023.
- T. Huang, J.L. Liu, R.S. Li, W.B. Cai and A.S. Yu, Electrochem. Commun., 11, 643 (2009); doi:10.1016/j.elecom.2009.01.008.
- I.S. Park, B. Choi, D.S. Jung and Y.E. Sung, Electrochim. Acta, 52, 1683 (2006); doi:10.1016/j.electacta.2006.03.099.
- D.R. Ou, T. Mori, H. Togasaki, M. Takahashi, F. Ye and J. Drennan, Langmuir, 27, 3859 (2011); doi:10.1021/la1032898.
- P. Singh and M.S. Hegde, Cryst. Growth Des., 10, 2995 (2010); doi:10.1021/cg1000649.
- S. Rousseau, O. Marie, P. Bazin, M. Daturi, S. Verdier and V. Harlé, J. Am. Chem. Soc., 132, 10832 (2010); doi:10.1021/ja1028809.
- R.K. Pandey and V. Lakshminarayanan, J. Phys. Chem. C, 113, 21596 (2009); doi:10.1021/jp908239m.
- R.B. Jiang, W.Y. Guo, M. Li, H.Y. Zhu, L.M. Zhao, X.Q. Lu and H.H. Shan, J. Mol. Catal. A, 344, 99 (2011); doi:10.1016/j.molcata.2011.05.007.
- K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang and C.R. Wan, Solid State Ion., 178, 115 (2007); doi:10.1016/j.ssi.2006.10.029.
- M.D. Gross, J.M. Vohs and R.J. Gorte, J. Electrochem. Soc., 153, A1386 (2006); doi:10.1149/1.2201534.
- P. Gazdzicki and P. Jakob, J. Phys. Chem. C, 115, 16555 (2011); doi:10.1021/jp204704e.
- S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis and S. Sotiropoulos, J. Phys. Chem. C, 114, 5217 (2010); doi:10.1021/jp911568g.
- S.J. Guo, S. Zhang, X.L. Sun and S.H. Sun, J. Am. Chem. Soc., 133, 15354 (2011); doi:10.1021/ja207308b.
References
A. Velázquez-Palenzuela, F. Centellas, J.A. Garrido, C. Arias, R.M. Rodríguez, E. Brillas and P.L. Cabot, J. Power Sources, 196, 3503 (2011); doi:10.1016/j.jpowsour.2010.12.044.
A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio and M.T.M. Koper, Electrochem. Commun., 13, 466 (2011); doi:10.1016/j.elecom.2011.02.022.
H. Zhang, X.Q. Xu, P. Gu, C.Y. Li, P. Wu and C.X. Cai, Electrochim. Acta, 56, 7064 (2011); doi:10.1016/j.electacta.2011.05.118.
H.J. Ahn and D.Y. Wang, Solid State Sci., 13, 1612 (2011); doi:10.1016/j.solidstatesciences.2011.06.011.
Y.Y. Xu, Y.N. Dong, J. Shi, M.L. Xu, Z.F. Zhang and X.K. Yang, Catal. Commun., 13, 54 (2011); doi:10.1016/j.catcom.2011.06.018.
I.J. Hsu, D.V. Esposito, E.G. Mahoney, A. Black and J.G.G. Chen, J. Power Sources, 196, 8307 (2011); doi:10.1016/j.jpowsour.2011.06.043.
S.K. Cui and D.J. Guo, J. Colloid Interf. Sci., 333, 300 (2009); doi:10.1016/j.jcis.2009.01.067.
D.J. Guo, X.P. Qiu, L.Q. Chen and W.T. Zhu, Carbon, 47, 1680 (2009); doi:10.1016/j.carbon.2009.02.023.
T. Huang, J.L. Liu, R.S. Li, W.B. Cai and A.S. Yu, Electrochem. Commun., 11, 643 (2009); doi:10.1016/j.elecom.2009.01.008.
I.S. Park, B. Choi, D.S. Jung and Y.E. Sung, Electrochim. Acta, 52, 1683 (2006); doi:10.1016/j.electacta.2006.03.099.
D.R. Ou, T. Mori, H. Togasaki, M. Takahashi, F. Ye and J. Drennan, Langmuir, 27, 3859 (2011); doi:10.1021/la1032898.
P. Singh and M.S. Hegde, Cryst. Growth Des., 10, 2995 (2010); doi:10.1021/cg1000649.
S. Rousseau, O. Marie, P. Bazin, M. Daturi, S. Verdier and V. Harlé, J. Am. Chem. Soc., 132, 10832 (2010); doi:10.1021/ja1028809.
R.K. Pandey and V. Lakshminarayanan, J. Phys. Chem. C, 113, 21596 (2009); doi:10.1021/jp908239m.
R.B. Jiang, W.Y. Guo, M. Li, H.Y. Zhu, L.M. Zhao, X.Q. Lu and H.H. Shan, J. Mol. Catal. A, 344, 99 (2011); doi:10.1016/j.molcata.2011.05.007.
K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang and C.R. Wan, Solid State Ion., 178, 115 (2007); doi:10.1016/j.ssi.2006.10.029.
M.D. Gross, J.M. Vohs and R.J. Gorte, J. Electrochem. Soc., 153, A1386 (2006); doi:10.1149/1.2201534.
P. Gazdzicki and P. Jakob, J. Phys. Chem. C, 115, 16555 (2011); doi:10.1021/jp204704e.
S. Papadimitriou, S. Armyanov, E. Valova, A. Hubin, O. Steenhaut, E. Pavlidou, G. Kokkinidis and S. Sotiropoulos, J. Phys. Chem. C, 114, 5217 (2010); doi:10.1021/jp911568g.
S.J. Guo, S. Zhang, X.L. Sun and S.H. Sun, J. Am. Chem. Soc., 133, 15354 (2011); doi:10.1021/ja207308b.