Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Synthesis Mechanism and Electrochemical Performance of LiTi2(PO4)3
Corresponding Author(s) : Wei Zhu
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
LiTi2(PO4)3/C was synthesized by high-temperature solid-state method. The microstructure, morphology of the samples were characterized and investigated by X-ray diffraction and its electrochemical properties were characterized in an organic and aqueous electrolyte. Galvan static charge-discharge cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 142.7 mAh/g and quite good capacity retention during cycling, 97 % after 50 cycles and 90.17 % after 50 cycles at a 5 C cycling rate in an organic electrolyte. Choosing LiFePO4/2M, Li2SO4/LiTi2(PO4)3/C and LiCoO2/2 mol/L, Li2SO4/LiTi2(PO4)3/C as the aqueous solution battery system, test LiTi2(PO4)3/C/Galvan static charge-discharge performance. The result showed an initial discharge capacity of 69.4 mAh/g and 59.1 mAh/g respectively and their voltage platform is 0.9 V and 1.5 V at a 4 C cycling rate. All of those two aqueous battery systems have a good cycle performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Delmas, A. Nadiri and J.L. Soubeyroux, Solid State Ion., 28-30, 419 (1988); doi:10.1016/S0167-2738(88)80075-4.
- C.C. Torardi and E. Prince, Mater. Res. Bull., 21, 719 (1986); doi:10.1016/0025-5408(86)90151-0.
- A. Manthiram and J.B.J. Goodenough, Solid State Chem., 71, 349 (1987); doi:10.1016/0022-4596(87)90242-8.
- M. Liu, M. Zhou, G. Wang, H. Guo, F. Tian and X. Wang, Electrochim. Acta, 70, 136 (2012); doi:10.1016/j.electacta.2012.03.046.
- G.X. Wang, D.H. Bradhurst, S.X. Dou and H.K. Liu, J. Power Sources, 124, 231 (2003); doi:10.1016/S0378-7753(03)00609-8.
- J. Wolfenstine, J.L. Allen, J. Sumner and J. Sakamoto, Solid State Ion., 180, 961 (2009); doi:10.1016/j.ssi.2009.03.021.
- M. Zhou, L. Liu, L. Yi, Z. Yang, S. Mao, Y. Zhou, T. Hu, Y. Yang, B. Shen and X. Wang, J. Power Sources, 234, 292 (2013); doi:10.1016/j.jpowsour.2013.01.091.
- R.J. Orsato and S.R. Clegg, Sustain. Dev., 13, 253 (2005). doi:10.1002/sd.283.
- L. Liu, M. Zhou, G. Wang, H. Guo, F. Tian and X. Wang, Electrochim. Acta, 70, 136 (2012); doi:10.1016/j.electacta.2012.03.046.
- J.-Y. Luo, L.-J. Chen, Y.-J. Zhao, P. He and Y.-Y. Xia, J. Power Sources, 194, 1075 (2009); doi:10.1016/j.jpowsour.2009.06.050.
- C.R. Mariappan, C. Galven, M.-P. Crosnier-Lopez, F. Le Berre and O. Bohnke, J. Solid State Chem., 179, 450 (2006); doi:10.1016/j.jssc.2005.11.005.
- W. Zheng, M.Sc. Thesis, Lithium-ion electrode material LiFePO4 and LiTi2(PO4)3 Solid-phase synthesis and surface modification (LiFePO4 and LiTi2(PO4)3), Department of Materials Science, Zhejiang University (2010).
- H. Wang, K. Huang, Y. Zeng, S. Yang and L. Chen, Electrochim. Acta, 52, 3280 (2007); doi:10.1016/j.electacta.2006.10.010.
- J.Y. Luo and Y.Y. Xia, Adv. Funct. Mater., 17, 3877 (2007); doi:10.1002/adfm.200700638.
- J.Y. Luo, J. C. Wang, H. Ping and Y.Y. Xia, Nature Chemistry, 2, 760 (2010); doi:10.1038/nchem.763.
- K.C. Mahesh, G. S. Suresh and T.V. Venkatesha, J. Solid State Electrochem., 16, 3559 (2012); doi:10.1007/s10008-012-1787-3.
- C. Wessells, R.A. Huggins and Y. Cui, J. Power Sources, 196, 2884 (2011); doi:10.1016/j.jpowsour.2010.10.098.
References
C. Delmas, A. Nadiri and J.L. Soubeyroux, Solid State Ion., 28-30, 419 (1988); doi:10.1016/S0167-2738(88)80075-4.
C.C. Torardi and E. Prince, Mater. Res. Bull., 21, 719 (1986); doi:10.1016/0025-5408(86)90151-0.
A. Manthiram and J.B.J. Goodenough, Solid State Chem., 71, 349 (1987); doi:10.1016/0022-4596(87)90242-8.
M. Liu, M. Zhou, G. Wang, H. Guo, F. Tian and X. Wang, Electrochim. Acta, 70, 136 (2012); doi:10.1016/j.electacta.2012.03.046.
G.X. Wang, D.H. Bradhurst, S.X. Dou and H.K. Liu, J. Power Sources, 124, 231 (2003); doi:10.1016/S0378-7753(03)00609-8.
J. Wolfenstine, J.L. Allen, J. Sumner and J. Sakamoto, Solid State Ion., 180, 961 (2009); doi:10.1016/j.ssi.2009.03.021.
M. Zhou, L. Liu, L. Yi, Z. Yang, S. Mao, Y. Zhou, T. Hu, Y. Yang, B. Shen and X. Wang, J. Power Sources, 234, 292 (2013); doi:10.1016/j.jpowsour.2013.01.091.
R.J. Orsato and S.R. Clegg, Sustain. Dev., 13, 253 (2005). doi:10.1002/sd.283.
L. Liu, M. Zhou, G. Wang, H. Guo, F. Tian and X. Wang, Electrochim. Acta, 70, 136 (2012); doi:10.1016/j.electacta.2012.03.046.
J.-Y. Luo, L.-J. Chen, Y.-J. Zhao, P. He and Y.-Y. Xia, J. Power Sources, 194, 1075 (2009); doi:10.1016/j.jpowsour.2009.06.050.
C.R. Mariappan, C. Galven, M.-P. Crosnier-Lopez, F. Le Berre and O. Bohnke, J. Solid State Chem., 179, 450 (2006); doi:10.1016/j.jssc.2005.11.005.
W. Zheng, M.Sc. Thesis, Lithium-ion electrode material LiFePO4 and LiTi2(PO4)3 Solid-phase synthesis and surface modification (LiFePO4 and LiTi2(PO4)3), Department of Materials Science, Zhejiang University (2010).
H. Wang, K. Huang, Y. Zeng, S. Yang and L. Chen, Electrochim. Acta, 52, 3280 (2007); doi:10.1016/j.electacta.2006.10.010.
J.Y. Luo and Y.Y. Xia, Adv. Funct. Mater., 17, 3877 (2007); doi:10.1002/adfm.200700638.
J.Y. Luo, J. C. Wang, H. Ping and Y.Y. Xia, Nature Chemistry, 2, 760 (2010); doi:10.1038/nchem.763.
K.C. Mahesh, G. S. Suresh and T.V. Venkatesha, J. Solid State Electrochem., 16, 3559 (2012); doi:10.1007/s10008-012-1787-3.
C. Wessells, R.A. Huggins and Y. Cui, J. Power Sources, 196, 2884 (2011); doi:10.1016/j.jpowsour.2010.10.098.