Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Lipase-catalyzed Biodiesel Production in [BMIM][PF6]
Corresponding Author(s) : W.S. Guan
Asian Journal of Chemistry,
Vol. 26 No. 10 (2014): Vol 26 Issue 10
Abstract
Lipase-catalyzed transesterification of Tung oil in room temperature ionic liquids reaction system was studied with Liaclzyme and Limczyme (immobilized lipase from Candida antarctica). Limczyme was more perfect biocatalyzers than Liaclzyme. The[BMIM][PF6] was more perfect reaction medium than the others. The optimal technology parameters of production biodiesel from Tung oil using Limczyme as biocatalyzer was as follows: [BMIM][PF6] as reaction medium, pH 7.5, reaction temperature 40 °C, water content of 6 %, immobilized lipase Limczyme amount of 5 %, shaker speed of 200 rpm, reaction time of 48 h. As double substrates, the molar ratio of methanol to Tung oil should be maintained at 1.0, while methanol should be added into bioreactor step by step.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Dong, S.J. Zhang, D. Wang and X.Q. Yao, J. Phys. Chem. A, 110, 9775 (2006); doi:10.1021/jp054054c.
- Y. Shimada, Y. Watanabe, A. Sugihara and Y. Tominaga, J. Mol. Catal., B Enzym., 17, 133 (2002); doi:10.1016/S1381-1177(02)00020-6.
- S.H. Ha, M.N. Lan, S.H. Lee, S.M. Hwang and Y.-M. Koo, Enzyme Microb. Technol., 41, 480 (2007); doi:10.1016/j.enzmictec.2007.03.017.
- B.K. Barnwal and M.P. Sharma, Renew. Sustain. Energy Rev., 9, 363 (2005); doi:10.1016/j.rser.2004.05.007.
- R. Madeira Lau, F. Van Rantwijk, K.R. Seddon and R.A. Sheldon, Org. Lett., 2, 4189 (2000); doi:10.1021/ol006732d.
- P. Lozano, T. De Diego, D. Carrié, M. Vaultier and J.L. Iborra, Biotechnol. Lett., 23, 1529 (2001); doi:10.1023/A:1011697609756.
- D. Royon, M. Daz, G. Ellenrieder and S. Locatelli, Bioresour. Technol., 98, 648 (2007); doi:10.1016/j.biortech.2006.02.021.
- L. Yang, J.S. Dordick and S. Garde, Biophys. J., 87, 812 (2004); doi:10.1529/biophysj.104.041269.
- J.A. Laszlo and D.L. Compton, Biotechnol. Bioeng., 75, 181 (2001); doi:10.1002/bit.1177.
- W.-Y. Lou, M.-H. Zong, Y.-Y. Liu and J.-F. Wang, J. Biotechnol., 125, 64 (2006); doi:10.1016/j.jbiotec.2006.01.017.
- M. Eckstein, M. Sesing, U. Kragl and P. Adlercreutz, Biotechnol. Lett., 24, 867 (2002); doi:10.1023/A:1015564608261.
- P. Kuhl and J.P. Halling, Biochim. Biophys. Acta, 1078, 326 (1991); doi:10.1016/0167-4838(91)90151-O.
References
K. Dong, S.J. Zhang, D. Wang and X.Q. Yao, J. Phys. Chem. A, 110, 9775 (2006); doi:10.1021/jp054054c.
Y. Shimada, Y. Watanabe, A. Sugihara and Y. Tominaga, J. Mol. Catal., B Enzym., 17, 133 (2002); doi:10.1016/S1381-1177(02)00020-6.
S.H. Ha, M.N. Lan, S.H. Lee, S.M. Hwang and Y.-M. Koo, Enzyme Microb. Technol., 41, 480 (2007); doi:10.1016/j.enzmictec.2007.03.017.
B.K. Barnwal and M.P. Sharma, Renew. Sustain. Energy Rev., 9, 363 (2005); doi:10.1016/j.rser.2004.05.007.
R. Madeira Lau, F. Van Rantwijk, K.R. Seddon and R.A. Sheldon, Org. Lett., 2, 4189 (2000); doi:10.1021/ol006732d.
P. Lozano, T. De Diego, D. Carrié, M. Vaultier and J.L. Iborra, Biotechnol. Lett., 23, 1529 (2001); doi:10.1023/A:1011697609756.
D. Royon, M. Daz, G. Ellenrieder and S. Locatelli, Bioresour. Technol., 98, 648 (2007); doi:10.1016/j.biortech.2006.02.021.
L. Yang, J.S. Dordick and S. Garde, Biophys. J., 87, 812 (2004); doi:10.1529/biophysj.104.041269.
J.A. Laszlo and D.L. Compton, Biotechnol. Bioeng., 75, 181 (2001); doi:10.1002/bit.1177.
W.-Y. Lou, M.-H. Zong, Y.-Y. Liu and J.-F. Wang, J. Biotechnol., 125, 64 (2006); doi:10.1016/j.jbiotec.2006.01.017.
M. Eckstein, M. Sesing, U. Kragl and P. Adlercreutz, Biotechnol. Lett., 24, 867 (2002); doi:10.1023/A:1015564608261.
P. Kuhl and J.P. Halling, Biochim. Biophys. Acta, 1078, 326 (1991); doi:10.1016/0167-4838(91)90151-O.