Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Homogeneous Gas-Phase Formation Mechanism of Emerging Organic Pollutants Polyfluorinated Dibenzo-p-dioxins and Dibenzofurans from 2-Fluorophenol
Corresponding Author(s) : Qingzhu Zhang
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
The emerging organic pollutants polyfluorinated dibenzo-p-dioxins and dibenzofurans (PFDD/Fs) have attracted wide attention in environmental and toxicological effects. Here, based on the results of density functional theory (DFT) calculations, we present detailed insight into the formation mechanism of polyfluorinated dibenzo-p-dioxins and dibenzofurans. Fluorophenols are recognized as precursors of polyfluorinated dibenzo-p-dioxins and dibenzofurans. Using the simple structure 2-fluorophenol as model precursor, the formation mechanism of polyfluorinated dibenzo-p-dioxins and dibenzofurans was investigated. Thermodynamic and kinetic analysis suggested that only the pathways with no C-F bond breaking are thermodynamically favorable. The possible formation mechanism is compared with formation mechanism of polychlorinated dibenzo-p-dioxin/dibenzofurans and polybrominated dibenzo-p-dioxins and dibenzofurans in the previous literature. The rate constants and their temperature dependence of the crucial elementary reactions are calculated by canonical variation transition-state theory with the small curvature tunneling contribution over the temperature range of 600-1200 K. The calculated results may help to improve our understanding for the formation mechanism of polyfluorinated dibenzo-p-dioxins and dibenzofurans and be informative to environmental scientists.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Weber, D. Schrenk, H.J. Schmitz, A. Hagenmaier and H. Hagemnaier, Chemosphere, 30, 629 (1995); doi:10.1016/0045-6535(94)00429-X.
- S. Sakai, M. Hiraoka and K. Shiozaki, Organohalogen Compd., 23, 347 (1995).
- B.D. Key, R.D. Howell and C.S. Criddle, Environ. Sci. Technol., 31, 2445 (1997); doi:10.1021/es961007c.
- Y. Liu, L. Ma, Y. Liu and G. Kong, Environ. Sci. Technol., 40, 6411 (2006); doi:10.1021/es060190z.
- J. Sanchez, F. Alloin and C. Iojoiu, J. Fluor. Chem., 127, 1471 (2006); doi:10.1016/j.jfluchem.2006.10.011.
- H. Hou, B. Chen, X. Zhang and Z. Wang, Acta Chim. Sin., 69, 617 (2011).
- X. Yang, H. Liu, H. Hou, A. Flamm, X. Zhang and Z. Wang, J. Hazard. Mater., 181, 969 (2010); doi:10.1016/j.jhazmat.2010.05.108.
- P.H. Taylor, T. Yamada, R.C. Striebich, J.L. Graham and R.J. Giraud, Reprod. Toxicol., 33, 606 (2012); doi:10.1016/j.reprotox.2011.11.057.
- D. Herzke, R. Thiel, W.D. Rotard and D. Neubert, Life Sci., 71, 1475 (2002); doi:10.1016/S0024-3205(02)01924-0.
- T. Zhang, H.W. Sun, Q. Wu, X.Z. Zhang, S.H. Yun and K. Kannan, Environ. Sci. Technol., 44, 3572 (2010); doi:10.1021/es1000159.
- A.B. Lindstrom, M.J. Strynar and E.L. Libelo, Environ. Sci. Technol., 45, 7954 (2011); doi:10.1021/es2011622.
- R.E. Alcock and K.C. Jones, Environ. Sci. Technol., 30, 3133 (1996); doi:10.1021/es960306z.
- A. Yasuhara, T. Katami, T. Okuda, N. Ohno and T. Shibamoto, Environ. Sci. Technol., 35, 1373 (2001); doi:10.1021/es001210e.
- R. Addink and E.R. Altwicker, Environ. Sci. Technol., 38, 5196 (2004); doi:10.1021/es035197k.
- M. Teng, New Chem. Mater., 11, 1 (2002).
- J. Shi, R. Qu, A. Flamm, H. Liu, Y. Xu and Z. Wang, Sci. Total Environ., 414, 404 (2012); doi:10.1016/j.scitotenv.2011.10.063.
- J. Iskra, S. Stavber and M. Zupan, Collect. Czech. Chem. Commun., 73, 1671 (2008); doi:10.1135/cccc20081671.
- W. Yu, J. Hu, F. Xu, X. Sun, R. Gao, Q. Zhang and W. Wang, Environ. Sci. Technol., 45, 1917 (2011); doi:10.1021/es103536t.
- F. Xu, W. Yu, R. Gao, Q. Zhou, Q. Zhang and W. Wang, Environ. Sci. Technol., 44, 6745 (2010); doi:10.1021/es101794v.
- Q. Zhang, S. Li, X. Qu, X. Shi and W. Wang, Environ. Sci. Technol., 42, 7301 (2008); doi:10.1021/es801599n.
- Y. Zhao and D.G. Truhlar, J. Phys. Chem. A, 108, 6908 (2004); doi:10.1021/jp048147q.
- J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 5, 808 (2009); doi:10.1021/ct800568m.
- C. Zhang, T. Sun and X. Sun, Environ. Sci. Technol., 45, 4756 (2011); doi:10.1021/es104271a.
- X. Sun, C. Zhang, Y. Zhao, J. Bai, Q. Zhang and W. Wang, Environ. Sci. Technol., 46, 8148 (2012); doi:10.1021/es301413v.
- B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83, 1052 (1979); doi:10.1021/j100471a031.
- K.K. Baldridge, M.S. Gordon, R. Steckler and D.G. Truhlar, J. Phys. Chem., 93, 5107 (1989); doi:10.1021/j100350a018.
- A. Fernández-Ramos, E. Martínez-Núñez, M.A. Ríos, J. Rodríguez-Otero, S.A. Vázquez and C.M. Estévez, J. Am. Chem. Soc., 120, 7594 (1998); doi:10.1021/ja9809307.
- H. Landolt and R. Börnstein, Structure Data of Free Polyatomic Mole-cules, Springer (1992).
- M.A.V. Ribeiro da Silva and A.I.M.C. Lobo Ferreira, J. Chem. Thermodyn., 41, 1104 (2009); doi:10.1016/j.jct.2009.04.017.
- W. Malcolm and Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, Journal of Physical and Chemical Reference Data, Monograph 9, Washington, D.C. (1998).
- W. Pan, D. Zhang, Z. Han, J. Zhan and C. Liu, Environ. Sci. Technol., 47, 8489 (2013); doi:10.1021/es400632j.
- Q. Luo and Q.S. Li, J. Phys. Chem. A, 108, 5050 (2004); doi:10.1021/jp049736z.
References
R. Weber, D. Schrenk, H.J. Schmitz, A. Hagenmaier and H. Hagemnaier, Chemosphere, 30, 629 (1995); doi:10.1016/0045-6535(94)00429-X.
S. Sakai, M. Hiraoka and K. Shiozaki, Organohalogen Compd., 23, 347 (1995).
B.D. Key, R.D. Howell and C.S. Criddle, Environ. Sci. Technol., 31, 2445 (1997); doi:10.1021/es961007c.
Y. Liu, L. Ma, Y. Liu and G. Kong, Environ. Sci. Technol., 40, 6411 (2006); doi:10.1021/es060190z.
J. Sanchez, F. Alloin and C. Iojoiu, J. Fluor. Chem., 127, 1471 (2006); doi:10.1016/j.jfluchem.2006.10.011.
H. Hou, B. Chen, X. Zhang and Z. Wang, Acta Chim. Sin., 69, 617 (2011).
X. Yang, H. Liu, H. Hou, A. Flamm, X. Zhang and Z. Wang, J. Hazard. Mater., 181, 969 (2010); doi:10.1016/j.jhazmat.2010.05.108.
P.H. Taylor, T. Yamada, R.C. Striebich, J.L. Graham and R.J. Giraud, Reprod. Toxicol., 33, 606 (2012); doi:10.1016/j.reprotox.2011.11.057.
D. Herzke, R. Thiel, W.D. Rotard and D. Neubert, Life Sci., 71, 1475 (2002); doi:10.1016/S0024-3205(02)01924-0.
T. Zhang, H.W. Sun, Q. Wu, X.Z. Zhang, S.H. Yun and K. Kannan, Environ. Sci. Technol., 44, 3572 (2010); doi:10.1021/es1000159.
A.B. Lindstrom, M.J. Strynar and E.L. Libelo, Environ. Sci. Technol., 45, 7954 (2011); doi:10.1021/es2011622.
R.E. Alcock and K.C. Jones, Environ. Sci. Technol., 30, 3133 (1996); doi:10.1021/es960306z.
A. Yasuhara, T. Katami, T. Okuda, N. Ohno and T. Shibamoto, Environ. Sci. Technol., 35, 1373 (2001); doi:10.1021/es001210e.
R. Addink and E.R. Altwicker, Environ. Sci. Technol., 38, 5196 (2004); doi:10.1021/es035197k.
M. Teng, New Chem. Mater., 11, 1 (2002).
J. Shi, R. Qu, A. Flamm, H. Liu, Y. Xu and Z. Wang, Sci. Total Environ., 414, 404 (2012); doi:10.1016/j.scitotenv.2011.10.063.
J. Iskra, S. Stavber and M. Zupan, Collect. Czech. Chem. Commun., 73, 1671 (2008); doi:10.1135/cccc20081671.
W. Yu, J. Hu, F. Xu, X. Sun, R. Gao, Q. Zhang and W. Wang, Environ. Sci. Technol., 45, 1917 (2011); doi:10.1021/es103536t.
F. Xu, W. Yu, R. Gao, Q. Zhou, Q. Zhang and W. Wang, Environ. Sci. Technol., 44, 6745 (2010); doi:10.1021/es101794v.
Q. Zhang, S. Li, X. Qu, X. Shi and W. Wang, Environ. Sci. Technol., 42, 7301 (2008); doi:10.1021/es801599n.
Y. Zhao and D.G. Truhlar, J. Phys. Chem. A, 108, 6908 (2004); doi:10.1021/jp048147q.
J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 5, 808 (2009); doi:10.1021/ct800568m.
C. Zhang, T. Sun and X. Sun, Environ. Sci. Technol., 45, 4756 (2011); doi:10.1021/es104271a.
X. Sun, C. Zhang, Y. Zhao, J. Bai, Q. Zhang and W. Wang, Environ. Sci. Technol., 46, 8148 (2012); doi:10.1021/es301413v.
B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83, 1052 (1979); doi:10.1021/j100471a031.
K.K. Baldridge, M.S. Gordon, R. Steckler and D.G. Truhlar, J. Phys. Chem., 93, 5107 (1989); doi:10.1021/j100350a018.
A. Fernández-Ramos, E. Martínez-Núñez, M.A. Ríos, J. Rodríguez-Otero, S.A. Vázquez and C.M. Estévez, J. Am. Chem. Soc., 120, 7594 (1998); doi:10.1021/ja9809307.
H. Landolt and R. Börnstein, Structure Data of Free Polyatomic Mole-cules, Springer (1992).
M.A.V. Ribeiro da Silva and A.I.M.C. Lobo Ferreira, J. Chem. Thermodyn., 41, 1104 (2009); doi:10.1016/j.jct.2009.04.017.
W. Malcolm and Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, Journal of Physical and Chemical Reference Data, Monograph 9, Washington, D.C. (1998).
W. Pan, D. Zhang, Z. Han, J. Zhan and C. Liu, Environ. Sci. Technol., 47, 8489 (2013); doi:10.1021/es400632j.
Q. Luo and Q.S. Li, J. Phys. Chem. A, 108, 5050 (2004); doi:10.1021/jp049736z.