Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect High Temperature Annealing on Graphitization of Anthracite
Corresponding Author(s) : Heng Ma
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
Effect of high temperature anneal on the graphitizability of an anthracite coal is explored. A thermal anneal of Taixi Coal Mine anthracite at 1400, 1600 and 1800 °C in argon was investigated. The sample was investigated by XRD, FTIR and SEM. The result shows that after low temperature anneal, the anthracite is amorphous state carbon, high temperature benefit to graphitization of the sample. The anthracite contains chemical functional groups of COOH and C-H, which decomposed at high temperature; after high temperature anneal, vitrinite and fusinite separated from the anthracite base. The shape of vitrinite is round particles and the fusinite is rod like.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Bustin, J.N. Rouzaud and J.V. Ross, Carbon, 33, 679 (1995); doi:10.1016/0008-6223(94)00155-S.
- N. Cohaut, C. Blanche, D. Dumas, J.M. Guet and J.N. Rouzaud, Carbon, 38, 1391 (2000); doi:10.1016/S0008-6223(99)00274-2.
- D. Gonzalez, M.A. Montes-Moran and A.B. Garcia, Energy Fuels, 19, 263 (2005); doi:10.1021/ef049893x.
- E.L. Evans, J.L. Jenkins and J.M. Thomas, Carbon, 10, 637 (1972); doi:10.1016/0008-6223(72)90102-9.
- J J.A. Johansen and H. Gran, In ECA for Improved Cathode Performance, in: E.W. Lee, Light Metals 1997 TMS Annual Meeting & Exhibition, Feb. 10-13, pp. 627-631 (1997).
- D. Gonzalez, M.A. Montes-Moran and A.B. Garcia, Energy Fuels, 17, 1324 (2003); doi:10.1021/ef0300491.
- A.D. Lueking, H.R. Gutierrez, D.A. Fonseca, D.L. Narayanan, D. Van Essendelft, P. Jain and C.E.B. Clifford, J. Am. Chem. Soc., 128, 7758 (2006); doi:10.1021/ja0604818.
- A.D. Lueking, H.R. Gutierrez, P. Jain, D.T. Van Essandelft and C.E. Burgess-Clifford, Carbon, 45, 2297 (2007); doi:10.1016/j.carbon.2007.04.027.
- D.L. Narayanan and A.D. Lueking, Carbon, 45, 805 (2007); doi:10.1016/j.carbon.2006.11.017.
- B.J. Kim, Y.S. Lee and S.J. Park, Int. J. Hydrogen Energy, 33, 2254 (2008); doi:10.1016/j.ijhydene.2008.02.019.
- S.J. Park, B.J. Kim, Y.S. Lee and M.S. Cho, Int. J. Hydrogen Energy, 33, 1706 (2008); doi:10.1016/j.ijhydene.2008.01.011.
- C. Liu, Y. Chen, C.Z. Wu, S.T. Xu and H.M. Cheng, Carbon, 48, 452 (2010); doi:10.1016/j.carbon.2009.09.060.
- B. Kuchta, L. Firlej, P. Pfeifer and C. Wexler, Carbon, 48, 223 (2010); doi:10.1016/j.carbon.2009.09.009.
- M. Seifi, D.K. Ross, D.J. Riley and I. Morrison, Carbon, 47, 3184 (2009); doi:10.1016/j.carbon.2009.07.030.
- S.J. Yang, J.H. Cho, G.H. Oh, K.S. Nahm and C.R. Park, Carbon, 47, 1585 (2009); doi:10.1016/j.carbon.2009.02.010.
- K.Y. Kang, B.I. Lee and J.S. Lee, Carbon, 47, 1171 (2009); doi:10.1016/j.carbon.2009.01.001.
- J. Dong, X. Wang, H. Xu, Q. Zhao and J. Li, Int. J. Hydrogen Energy, 32, 4998 (2007); doi:10.1016/j.ijhydene.2007.08.009.
- S.F. Santos and J. Huot, J. Alloys Comp., 472, 247 (2009); doi:10.1016/j.jallcom.2008.04.062.
- G.L. Soloveichik, M. Andrus, Y. Gao, J.C. Zhao and S. Kniajanski, Int. J. Hydrogen Energy, 34, 2144 (2009); doi:10.1016/j.ijhydene.2008.12.053.
References
R.M. Bustin, J.N. Rouzaud and J.V. Ross, Carbon, 33, 679 (1995); doi:10.1016/0008-6223(94)00155-S.
N. Cohaut, C. Blanche, D. Dumas, J.M. Guet and J.N. Rouzaud, Carbon, 38, 1391 (2000); doi:10.1016/S0008-6223(99)00274-2.
D. Gonzalez, M.A. Montes-Moran and A.B. Garcia, Energy Fuels, 19, 263 (2005); doi:10.1021/ef049893x.
E.L. Evans, J.L. Jenkins and J.M. Thomas, Carbon, 10, 637 (1972); doi:10.1016/0008-6223(72)90102-9.
J J.A. Johansen and H. Gran, In ECA for Improved Cathode Performance, in: E.W. Lee, Light Metals 1997 TMS Annual Meeting & Exhibition, Feb. 10-13, pp. 627-631 (1997).
D. Gonzalez, M.A. Montes-Moran and A.B. Garcia, Energy Fuels, 17, 1324 (2003); doi:10.1021/ef0300491.
A.D. Lueking, H.R. Gutierrez, D.A. Fonseca, D.L. Narayanan, D. Van Essendelft, P. Jain and C.E.B. Clifford, J. Am. Chem. Soc., 128, 7758 (2006); doi:10.1021/ja0604818.
A.D. Lueking, H.R. Gutierrez, P. Jain, D.T. Van Essandelft and C.E. Burgess-Clifford, Carbon, 45, 2297 (2007); doi:10.1016/j.carbon.2007.04.027.
D.L. Narayanan and A.D. Lueking, Carbon, 45, 805 (2007); doi:10.1016/j.carbon.2006.11.017.
B.J. Kim, Y.S. Lee and S.J. Park, Int. J. Hydrogen Energy, 33, 2254 (2008); doi:10.1016/j.ijhydene.2008.02.019.
S.J. Park, B.J. Kim, Y.S. Lee and M.S. Cho, Int. J. Hydrogen Energy, 33, 1706 (2008); doi:10.1016/j.ijhydene.2008.01.011.
C. Liu, Y. Chen, C.Z. Wu, S.T. Xu and H.M. Cheng, Carbon, 48, 452 (2010); doi:10.1016/j.carbon.2009.09.060.
B. Kuchta, L. Firlej, P. Pfeifer and C. Wexler, Carbon, 48, 223 (2010); doi:10.1016/j.carbon.2009.09.009.
M. Seifi, D.K. Ross, D.J. Riley and I. Morrison, Carbon, 47, 3184 (2009); doi:10.1016/j.carbon.2009.07.030.
S.J. Yang, J.H. Cho, G.H. Oh, K.S. Nahm and C.R. Park, Carbon, 47, 1585 (2009); doi:10.1016/j.carbon.2009.02.010.
K.Y. Kang, B.I. Lee and J.S. Lee, Carbon, 47, 1171 (2009); doi:10.1016/j.carbon.2009.01.001.
J. Dong, X. Wang, H. Xu, Q. Zhao and J. Li, Int. J. Hydrogen Energy, 32, 4998 (2007); doi:10.1016/j.ijhydene.2007.08.009.
S.F. Santos and J. Huot, J. Alloys Comp., 472, 247 (2009); doi:10.1016/j.jallcom.2008.04.062.
G.L. Soloveichik, M. Andrus, Y. Gao, J.C. Zhao and S. Kniajanski, Int. J. Hydrogen Energy, 34, 2144 (2009); doi:10.1016/j.ijhydene.2008.12.053.