Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Structure of 3-Chloromethyl-(3-phenyl-oxiranyl)phenyl Methanone: New Monoclinic Polymorph
Corresponding Author(s) : Muhammad Nadeem Arshad
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
The compound, 3-chloromethyl-(3-phenyl-oxiranyl)phenyl methanone [m.f. C16H13O2Cl] was a self-condensation product of phenacyl chloride where the reaction carried out in ethanol medium using inorganic base. This was crystalized in monoclinic with space group P21/c (no. 14), a = 10.1312 (2) Å, b = 11.7728 Å, c = 11.8566 Å, V = 1344.07 Å3, Z = 4 and rcalc. = 1.348 mg/mm3. The dihedral angle between two aromatic rings is 73.46 (5). The epoxide ring is oriented at dihedral angles of 62.12 (9°) and 60.87 (7°) with respect to the phenyl and benzoyl rings. The non-classical intermolecular hydrogen bonding of C-H···O type has been observed in the crystal structure of molecule.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.O.C. Norman and C.M. Coxon, Principles of Organic Synthesis, CRC Press, New York (2009).
- R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, New York (1994).
- F.W. Bachelor and R.K. Bansal, J. Org. Chem., 34, 3600 (1969); doi:10.1021/jo01263a082.
- R.K. Boeckman Jr., T.J. Clark and B.C. Shook, Helv. Chim. Acta, 85, 4532 (2002); doi:10.1002/hlca.200290026.
- A. Jonczyk and K. Michalski, Synlett, 1703 (2002); doi:10.1055/s-2002-34223.
- L.W. Xu, J.W. Li, S.L. Zhou and C.G. Xia, New J. Chem., 28, 183 (2004); doi:10.1039/b312047c.
- Z.-T. Wang, L.-W. Xu, C.-G. Xia and H.-Q. Wang, Helv. Chim. Acta, 87, 1958 (2004); doi:10.1002/hlca.200490177.
- O. Miyata, T. Shinada, I. Ninomiya and T. Naito, Tetrahedron, 53, 2421 (1997); doi:10.1016/S0040-4020(96)01191-X.
- B.M. Adger, J.V. Barkley, S. Bergeron, M.W. Cappi, B.E. Flowerdew, M.P. Jackson, R. McCague, T.C. Nugent and S.M. Roberts, J. Chem. Soc., Perkin Trans. I, 3501 (1997); doi:10.1039/a704413e.
- C. Lauret, Tetrahedron Asymm., 12, 2359 (2001); doi:10.1016/S0957-4166(01)00412-8.
- J.R. Flisak, K.J. Gombatz, M.M. Holmes, A.A. Jarmas, I. Lantos, W.L. Mendelson, V.J. Novack, J.J. Remich and L. Snyder, J. Org. Chem., 58, 6247 (1993); doi:10.1021/jo00075a019.
- P.C. Ray and S.M. Roberts, J. Chem. Soc., Perkin Trans. 1, 149 (2001); doi:10.1039/b007100p.
- T. Nemoto, T. Ohshima and M. Shibasaki, Tetrahedron Lett., 41, 9569 (2000); doi:10.1016/S0040-4039(00)01702-0.
- Agilent, CrysAlis PRO, Agilent Technologies, Yarnton, England (2012).
- L.J. Barbour, J. Supramol. Chem., 1, 189 (2001); doi:10.1016/S1472-7862(02)00030-8.
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); doi:10.1107/S0108767307043930.
- A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); doi:10.1107/S090744490804362X.
- L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); doi:10.1107/S0021889812029111.
- I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., B58, 389 (2002).
- P. Bako, E. Czinege, T. Bako, M. Czugler and L. Toke, Tetrahedron Asymmetry, 10, 4539 (1999); doi:10.1016/S0957-4166(99)00485-1.
References
R.O.C. Norman and C.M. Coxon, Principles of Organic Synthesis, CRC Press, New York (2009).
R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, New York (1994).
F.W. Bachelor and R.K. Bansal, J. Org. Chem., 34, 3600 (1969); doi:10.1021/jo01263a082.
R.K. Boeckman Jr., T.J. Clark and B.C. Shook, Helv. Chim. Acta, 85, 4532 (2002); doi:10.1002/hlca.200290026.
A. Jonczyk and K. Michalski, Synlett, 1703 (2002); doi:10.1055/s-2002-34223.
L.W. Xu, J.W. Li, S.L. Zhou and C.G. Xia, New J. Chem., 28, 183 (2004); doi:10.1039/b312047c.
Z.-T. Wang, L.-W. Xu, C.-G. Xia and H.-Q. Wang, Helv. Chim. Acta, 87, 1958 (2004); doi:10.1002/hlca.200490177.
O. Miyata, T. Shinada, I. Ninomiya and T. Naito, Tetrahedron, 53, 2421 (1997); doi:10.1016/S0040-4020(96)01191-X.
B.M. Adger, J.V. Barkley, S. Bergeron, M.W. Cappi, B.E. Flowerdew, M.P. Jackson, R. McCague, T.C. Nugent and S.M. Roberts, J. Chem. Soc., Perkin Trans. I, 3501 (1997); doi:10.1039/a704413e.
C. Lauret, Tetrahedron Asymm., 12, 2359 (2001); doi:10.1016/S0957-4166(01)00412-8.
J.R. Flisak, K.J. Gombatz, M.M. Holmes, A.A. Jarmas, I. Lantos, W.L. Mendelson, V.J. Novack, J.J. Remich and L. Snyder, J. Org. Chem., 58, 6247 (1993); doi:10.1021/jo00075a019.
P.C. Ray and S.M. Roberts, J. Chem. Soc., Perkin Trans. 1, 149 (2001); doi:10.1039/b007100p.
T. Nemoto, T. Ohshima and M. Shibasaki, Tetrahedron Lett., 41, 9569 (2000); doi:10.1016/S0040-4039(00)01702-0.
Agilent, CrysAlis PRO, Agilent Technologies, Yarnton, England (2012).
L.J. Barbour, J. Supramol. Chem., 1, 189 (2001); doi:10.1016/S1472-7862(02)00030-8.
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); doi:10.1107/S0108767307043930.
A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); doi:10.1107/S090744490804362X.
L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); doi:10.1107/S0021889812029111.
I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., B58, 389 (2002).
P. Bako, E. Czinege, T. Bako, M. Czugler and L. Toke, Tetrahedron Asymmetry, 10, 4539 (1999); doi:10.1016/S0957-4166(99)00485-1.