Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Properties of Barium Strontium Titanate (Ba1-xSrxTiO3, 0 £ x £ 1) Ceramics Prepared by Hydrothermal Process
Corresponding Author(s) : Min Zeng
Asian Journal of Chemistry,
Vol. 26 No. 9 (2014): Vol 26 Issue 9
Abstract
Barium strontium titanate (Ba1-xSrxTiO3, 0 £ x £ 1) was produced in a pressure vessel at 180 °C for 24 h using a facile hydrothermal technique, without any surfactants or templates, with an alkalescency solution. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy, the differential thermal analysis and thermo-gravimetry analysis and electron diffraction. The barium strontium titanate nanoparticles in various compositions were monodispersed without mutual aggregation and their average sizes were in the range of 50-80 nm. Furthermore, they showed highly crystallized perovskite phase over the whole composition range. The stoichiometry of the (Ba1-xSrx)TiO3 powder is discussed in relation to the mechanism of formation of the perovskite phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Tusseau-Nenez, J.-P. Ganne, M. Maglione, A. Morell, J.-C. Niepce and M. Pate, J. Eur. Ceram. Soc., 24, 3003 (2004); doi:10.1016/j.jeurceramsoc.2003.11.019.
- H.V. Alexandru, C. Berbecaru, A. Ioachim, M.I. Toacsen, M.G. Banciu, L. Nedelcu and D. Ghetu, Mater. Sci. Eng. B, 109, 152 (2004); doi:10.1016/j.mseb.2003.10.034.
- D. Zhang and P. Yu, Asian J. Chem., 24, 1715 (2012).
- A. Ries, A.Z. Simoes, M. Cilense, M.A. Zaghete and J.A. Varela, Mater. Charact., 50, 217 (2003); doi:10.1016/S1044-5803(03)00095-0.
- R.K. Roeder and E.B. Slamovich, J. Am. Ceram. Soc., 82, 1665 (1999); doi:10.1111/j.1151-2916.1999.tb01984.x.
- M. Zeng, Appl. Surf. Sci., 257, 6636 (2011); doi:10.1016/j.apsusc.2011.02.090.
- J. Liu, J. Wang and H. Zhou, Asian J. Chem., 24, 5055 (2012).
- M. Zeng, N. Uekawa, T. Kojima and K. Kakegawa, J. Mater. Res., 22, 2631 (2007); doi:10.1557/jmr.2007.0337.
- S.B. Deshpande, Y.B. Khollam, S.V. Bhoraskar, S.K. Date, S.R. Sainkar and H.S. Potdar, Mater. Lett., 59, 293 (2005); doi:10.1016/j.matlet.2004.10.006.
- M. Zeng, Y.J. Ma, S.W. Chen and C.H. Pei, Mater. Sci. Forum, 694, 108 (2011); doi:10.4028/www.scientific.net/MSF.694.108.
References
S. Tusseau-Nenez, J.-P. Ganne, M. Maglione, A. Morell, J.-C. Niepce and M. Pate, J. Eur. Ceram. Soc., 24, 3003 (2004); doi:10.1016/j.jeurceramsoc.2003.11.019.
H.V. Alexandru, C. Berbecaru, A. Ioachim, M.I. Toacsen, M.G. Banciu, L. Nedelcu and D. Ghetu, Mater. Sci. Eng. B, 109, 152 (2004); doi:10.1016/j.mseb.2003.10.034.
D. Zhang and P. Yu, Asian J. Chem., 24, 1715 (2012).
A. Ries, A.Z. Simoes, M. Cilense, M.A. Zaghete and J.A. Varela, Mater. Charact., 50, 217 (2003); doi:10.1016/S1044-5803(03)00095-0.
R.K. Roeder and E.B. Slamovich, J. Am. Ceram. Soc., 82, 1665 (1999); doi:10.1111/j.1151-2916.1999.tb01984.x.
M. Zeng, Appl. Surf. Sci., 257, 6636 (2011); doi:10.1016/j.apsusc.2011.02.090.
J. Liu, J. Wang and H. Zhou, Asian J. Chem., 24, 5055 (2012).
M. Zeng, N. Uekawa, T. Kojima and K. Kakegawa, J. Mater. Res., 22, 2631 (2007); doi:10.1557/jmr.2007.0337.
S.B. Deshpande, Y.B. Khollam, S.V. Bhoraskar, S.K. Date, S.R. Sainkar and H.S. Potdar, Mater. Lett., 59, 293 (2005); doi:10.1016/j.matlet.2004.10.006.
M. Zeng, Y.J. Ma, S.W. Chen and C.H. Pei, Mater. Sci. Forum, 694, 108 (2011); doi:10.4028/www.scientific.net/MSF.694.108.