Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photoluminescence and γ-Ray Induced Thermoluminescence Investigation of Phase Pure Cerium Doped Yttrium Silicate Nanophosphors
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Y2SiO5:Ce3+ (1-7 mol %) nanophosphors were prepared by solution combustion method using oxalyldihydrazide fuel. The phosphors were characterized by X-ray diffraction, scanning electron microscopy, UV-visible and Fourier transform infrared spectroscopy. The XRD patterns confirm the monoclinic structure of the prepared phosphors, with crystallite size of 66-74 nm. The surface morphology and elemental composition were evaluated by SEM and energy dispersive X-ray analysis. The optical band gap was calculated and is between 4.66 eV – 4.9 eV. The presence of Si-O-Si and Y-O bonds was confirmed by the FTIR spectra. Effect of cerium concentration on photoluminescence and thermoluminescence intensity were interpreted. The photoluminescence emission spectrum was recorded under excitation wavelength of 370 nm, the emission spectra showed three significant peaks positioned at 418 nm, 459 nm and 485 nm, which are ascribed to electronic transitions between 5d-4f levels. The nature and activity of trap centers were evaluated from the parameters obtained from Chen′s peak shape method. The intense blue emission by phosphor makes it a competent material for blue emission display devices. Also, its thermoluminescence properties make it a good material for dosimetric applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.R. Ronda, J. Lumin., 72-74, 49 (1997); https://doi.org/10.1016/S0022-2313(96)00374-2.
- Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen and A.K. Kar, Opt. Lett., 37, 3339 (2012); https://doi.org/10.1364/OL.37.003339.
- L.H. Slooff, A. Van Blaaderen, A. Polman, G.A. Hebbink, S.I. Klink, F.C.J.M. Van Veggel, D.N. Reinhoudt and J.W. Hofstraat, J. Appl. Phys., 91, 3955 (2002); https://doi.org/10.1063/1.1454190.
- D. Weller and W. Reim, Appl. Phys., A Solids Surf., 49, 599 (1989); https://doi.org/10.1007/BF00616985.
- S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang and J. Lin, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 2927 (2017); https://doi.org/10.1039/C6TC05499D.
- T. Grzyb, A. Szczeszak, J. Rozowska, J. Legendziewicz and S. Lis, J. Phys. Chem. C, 116, 3219 (2012); https://doi.org/10.1021/jp208015z.
- Z. Sun, M. Li and Y. Zhou, J. Eur. Ceram. Soc., 29, 551 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.07.026.
- X. Qin, Y. Ju, S. Bernhard and N. Yao, Mater. Res. Bull., 42, 1440 (2007); https://doi.org/10.1016/j.materresbull.2006.11.021.
- X. Ouyang, A.H. Kitai and R. Siegele, Thin Solid Films, 254, 268 (1995); https://doi.org/10.1016/0040-6090(94)06255-J.
- M. Mitsunaga, R. Yano and N. Uesugi, Opt. Lett., 16, 1890 (1991); https://doi.org/10.1364/OL.16.001890.
- Y. Liu, C.-N. Xu, H. Matsui, T. Imamura and Tadahiko Watanabe, J. Lumin., 87-89, 1297 (2000); https://doi.org/10.1016/S0022-2313(99)00597-9.
- X. Ouyang, A.H. Kitai and T. Xiao, J. Appl. Phys., 79, 3229 (1996); https://doi.org/10.1063/1.361269.
- W. Ya-qin, H. Jian-Feng, C. Zheng-hui and C. Li-yun, J. Compos. Mater., 46, 409 (2012); https://doi.org/10.1177/0021998311425618.
- T. Karner, V.V. Laguta, M. Nikl, T. Shalapska and S. Zazubovich, J. Phys. D Appl. Phys., 47, 065303 (2014); https://doi.org/10.1088/0022-3727/47/6/065303.
- S. Saha, P.S. Chowdhury and A. Patra, J. Phys. Chem. B, 109, 2699 (2005); https://doi.org/10.1021/jp0462106.
- L. Guerbous and A. Boukerika, J. Nanomater., 2015, Article ID 617130 (2015); https://doi.org/10.1155/2015/617130.
- L. Parashuram, S. Sreenivasa, S. Akshatha, V.U. Kumar and S. Kumar, Asian J. Org. Chem., 6, 1755 (2017); https://doi.org/10.1002/ajoc.201700467.
- Y. Lin, S. Inoue, Y. Matsumura and J.C. Chen, AIP Adv., 7, 015208 (2017); https://doi.org/10.1063/1.4975151.
- G. Wang, L. Gao, H. Zhu and W. Zhou, Front. Mater. Sci., 10, 197 (2016); https://doi.org/10.1007/s11706-016-0340-1.
- A. Nohara, S. Takeshita, Y. Iso and T. Isobe, J. Mater. Sci., 51, 3311 (2016); https://doi.org/10.1007/s10853-015-9645-1.
- Y. Zhu, G. Xu, T. Guo, H. Hou and S. Tan, J. Alloys Compd., 720, 105 (2017); https://doi.org/10.1016/j.jallcom.2017.05.252.
- K. Dhanalakshmi, A. Jagannatha Reddy, D.L. Monika, R. Hari Krishna and L. Parashuram, J. Non-Cryst. Solids, 471, 195 (2017); https://doi.org/10.1016/j.jnoncrysol.2017.05.040.
- K.C. Patil, S.T. Aruna and T. Mimani, Curr. Opin. Solid State Mater. Sci., 6, 507 (2002); https://doi.org/10.1016/S1359-0286(02)00123-7.
- A.S. Mukasyan, P. Epstein and P. Dinka, Proc. Combust. Inst., 31, 1789 (2007); https://doi.org/10.1016/J.PROCI.2006.07.052.
- J. Kaur, Y. Parganiha, V. Dubey, D. Singh and D. Chandrakar, Superlattices Microstruct., 73, 38 (2014); https://doi.org/10.1016/j.spmi.2014.05.009.
- G.K. Williamson and W.H. Hall, Acta Metall., 1, 22 (1953); https://doi.org/10.1016/0001-6160(53)90006-6.
- V. Dubey, R. Tiwari, R. Shrivastava, C. Markande, O. Verma, J.K. Saluja, Y. Parganiha and K.V.R. Murthy, J. Disp. Technol., 12, 171 (2016); https://doi.org/10.1109/JDT.2015.2488359.
- L. Muresan, M. Stefan, E. Bica, M. Morar, E. Indrea and E.J. Popovici, J. Optoelectron. Adv. Mater., 2, 131 (2010).
- J. Tauc and A. Menth, J. Non-Cryst. Solids, 8-10, 569 (1972); https://doi.org/10.1016/0022-3093(72)90194-9.
- R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, D.M. Jnaneshwara, P.B. Devaraja and G.P. Darshan, AIP Conf. Proc., 1832, 050035 (2017); https://doi.org/10.1063/1.4980268.
- L.E. Muresan, A.I. Cadis, I. Perhaita, B.F. Oprea and D.T. Silipas, AIP Conf. Proc., 1565, 193 (2013); https://doi.org/10.1063/1.4833726.
- Y. Parganiha, J. Kaur, V. Dubey and K.V.R. Murthy, Mater. Sci. Semicond. Process., 31, 715 (2015); https://doi.org/10.1016/j.mssp.2014.12.070.
- V. Dubey, S. Agrawal and J. Kaur, Optik, 126, 1 (2015); https://doi.org/10.1016/j.ijleo.2014.06.175.
- V. Dubey, J. Kaur and S. Agrawal, Mater. Sci. Semicond. Process., 31, 27 (2015); https://doi.org/10.1016/j.mssp.2014.10.052.
- N. Karar and H. Chander, J. Phys. D Appl. Phys., 38, 3580 (2005); https://doi.org/10.1088/0022-3727/38/19/006.
- L.G. Van Uitert, J. Electrochem. Soc., 114, 1048 (1967); https://doi.org/10.1149/1.2424184.
- H. Wu, Y. Wang, Y. Hu, L. Deng and W. Xie, J. Phys. D Appl. Phys., 42, 125406 (2009); https://doi.org/10.1088/0022-3727/42/12/125406.
- R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantharaju, S.C. Sharma, B.M. Nagabhushana, H.B. Premkumar and K.M. Girish, J. Alloys Compd., 617, 69 (2014); https://doi.org/10.1016/j.jallcom.2014.07.100.
- D.B. Judd, J. Opt. Soc. Am., 26, 421 (1936); https://doi.org/10.1364/JOSA.26.000421.
- J. Schanda and M. Danyi, Color Res. Appl., 2, 161 (1977); https://doi.org/10.1002/col.5080020403.
- G.A. Kumar, M. Pokhrel, A. Martinez, R.C. Dennis, I.L. Villegas and D.K. Sardar, J. Alloys Compd., 513, 559 (2012); https://doi.org/10.1016/j.jallcom.2011.11.006.
- G. Sharm, P. Chawla, S.P. Lochab and N. Singh, Chalcogenide Lett., 6, 445 (2009).
- R. Chen and J. Appl. Phys, J. Phys. D, 2, 371 (1969); https://doi.org/10.1088/0022-3727/2/3/309.
- M. Gokce, K.F. Oguz, T. Karali and M. Prokic, J. Phys. D Appl. Phys., 42, 105412 (2009); https://doi.org/10.1088/0022-3727/42/10/105412.
- Y. Wang and L. Wang, J. Appl. Phys., 101, 053108 (2007); https://doi.org/10.1063/1.2435822.
- Z.-X. Yuan, C. Chang, D. Mao and W. Ying, J. Alloys Compd., 377, 268 (2004); https://doi.org/10.1016/j.jallcom.2004.01.063.
References
C.R. Ronda, J. Lumin., 72-74, 49 (1997); https://doi.org/10.1016/S0022-2313(96)00374-2.
Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen and A.K. Kar, Opt. Lett., 37, 3339 (2012); https://doi.org/10.1364/OL.37.003339.
L.H. Slooff, A. Van Blaaderen, A. Polman, G.A. Hebbink, S.I. Klink, F.C.J.M. Van Veggel, D.N. Reinhoudt and J.W. Hofstraat, J. Appl. Phys., 91, 3955 (2002); https://doi.org/10.1063/1.1454190.
D. Weller and W. Reim, Appl. Phys., A Solids Surf., 49, 599 (1989); https://doi.org/10.1007/BF00616985.
S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang and J. Lin, J. Mater. Chem. C Mater. Opt. Electron. Devices, 5, 2927 (2017); https://doi.org/10.1039/C6TC05499D.
T. Grzyb, A. Szczeszak, J. Rozowska, J. Legendziewicz and S. Lis, J. Phys. Chem. C, 116, 3219 (2012); https://doi.org/10.1021/jp208015z.
Z. Sun, M. Li and Y. Zhou, J. Eur. Ceram. Soc., 29, 551 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.07.026.
X. Qin, Y. Ju, S. Bernhard and N. Yao, Mater. Res. Bull., 42, 1440 (2007); https://doi.org/10.1016/j.materresbull.2006.11.021.
X. Ouyang, A.H. Kitai and R. Siegele, Thin Solid Films, 254, 268 (1995); https://doi.org/10.1016/0040-6090(94)06255-J.
M. Mitsunaga, R. Yano and N. Uesugi, Opt. Lett., 16, 1890 (1991); https://doi.org/10.1364/OL.16.001890.
Y. Liu, C.-N. Xu, H. Matsui, T. Imamura and Tadahiko Watanabe, J. Lumin., 87-89, 1297 (2000); https://doi.org/10.1016/S0022-2313(99)00597-9.
X. Ouyang, A.H. Kitai and T. Xiao, J. Appl. Phys., 79, 3229 (1996); https://doi.org/10.1063/1.361269.
W. Ya-qin, H. Jian-Feng, C. Zheng-hui and C. Li-yun, J. Compos. Mater., 46, 409 (2012); https://doi.org/10.1177/0021998311425618.
T. Karner, V.V. Laguta, M. Nikl, T. Shalapska and S. Zazubovich, J. Phys. D Appl. Phys., 47, 065303 (2014); https://doi.org/10.1088/0022-3727/47/6/065303.
S. Saha, P.S. Chowdhury and A. Patra, J. Phys. Chem. B, 109, 2699 (2005); https://doi.org/10.1021/jp0462106.
L. Guerbous and A. Boukerika, J. Nanomater., 2015, Article ID 617130 (2015); https://doi.org/10.1155/2015/617130.
L. Parashuram, S. Sreenivasa, S. Akshatha, V.U. Kumar and S. Kumar, Asian J. Org. Chem., 6, 1755 (2017); https://doi.org/10.1002/ajoc.201700467.
Y. Lin, S. Inoue, Y. Matsumura and J.C. Chen, AIP Adv., 7, 015208 (2017); https://doi.org/10.1063/1.4975151.
G. Wang, L. Gao, H. Zhu and W. Zhou, Front. Mater. Sci., 10, 197 (2016); https://doi.org/10.1007/s11706-016-0340-1.
A. Nohara, S. Takeshita, Y. Iso and T. Isobe, J. Mater. Sci., 51, 3311 (2016); https://doi.org/10.1007/s10853-015-9645-1.
Y. Zhu, G. Xu, T. Guo, H. Hou and S. Tan, J. Alloys Compd., 720, 105 (2017); https://doi.org/10.1016/j.jallcom.2017.05.252.
K. Dhanalakshmi, A. Jagannatha Reddy, D.L. Monika, R. Hari Krishna and L. Parashuram, J. Non-Cryst. Solids, 471, 195 (2017); https://doi.org/10.1016/j.jnoncrysol.2017.05.040.
K.C. Patil, S.T. Aruna and T. Mimani, Curr. Opin. Solid State Mater. Sci., 6, 507 (2002); https://doi.org/10.1016/S1359-0286(02)00123-7.
A.S. Mukasyan, P. Epstein and P. Dinka, Proc. Combust. Inst., 31, 1789 (2007); https://doi.org/10.1016/J.PROCI.2006.07.052.
J. Kaur, Y. Parganiha, V. Dubey, D. Singh and D. Chandrakar, Superlattices Microstruct., 73, 38 (2014); https://doi.org/10.1016/j.spmi.2014.05.009.
G.K. Williamson and W.H. Hall, Acta Metall., 1, 22 (1953); https://doi.org/10.1016/0001-6160(53)90006-6.
V. Dubey, R. Tiwari, R. Shrivastava, C. Markande, O. Verma, J.K. Saluja, Y. Parganiha and K.V.R. Murthy, J. Disp. Technol., 12, 171 (2016); https://doi.org/10.1109/JDT.2015.2488359.
L. Muresan, M. Stefan, E. Bica, M. Morar, E. Indrea and E.J. Popovici, J. Optoelectron. Adv. Mater., 2, 131 (2010).
J. Tauc and A. Menth, J. Non-Cryst. Solids, 8-10, 569 (1972); https://doi.org/10.1016/0022-3093(72)90194-9.
R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, D.M. Jnaneshwara, P.B. Devaraja and G.P. Darshan, AIP Conf. Proc., 1832, 050035 (2017); https://doi.org/10.1063/1.4980268.
L.E. Muresan, A.I. Cadis, I. Perhaita, B.F. Oprea and D.T. Silipas, AIP Conf. Proc., 1565, 193 (2013); https://doi.org/10.1063/1.4833726.
Y. Parganiha, J. Kaur, V. Dubey and K.V.R. Murthy, Mater. Sci. Semicond. Process., 31, 715 (2015); https://doi.org/10.1016/j.mssp.2014.12.070.
V. Dubey, S. Agrawal and J. Kaur, Optik, 126, 1 (2015); https://doi.org/10.1016/j.ijleo.2014.06.175.
V. Dubey, J. Kaur and S. Agrawal, Mater. Sci. Semicond. Process., 31, 27 (2015); https://doi.org/10.1016/j.mssp.2014.10.052.
N. Karar and H. Chander, J. Phys. D Appl. Phys., 38, 3580 (2005); https://doi.org/10.1088/0022-3727/38/19/006.
L.G. Van Uitert, J. Electrochem. Soc., 114, 1048 (1967); https://doi.org/10.1149/1.2424184.
H. Wu, Y. Wang, Y. Hu, L. Deng and W. Xie, J. Phys. D Appl. Phys., 42, 125406 (2009); https://doi.org/10.1088/0022-3727/42/12/125406.
R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantharaju, S.C. Sharma, B.M. Nagabhushana, H.B. Premkumar and K.M. Girish, J. Alloys Compd., 617, 69 (2014); https://doi.org/10.1016/j.jallcom.2014.07.100.
D.B. Judd, J. Opt. Soc. Am., 26, 421 (1936); https://doi.org/10.1364/JOSA.26.000421.
J. Schanda and M. Danyi, Color Res. Appl., 2, 161 (1977); https://doi.org/10.1002/col.5080020403.
G.A. Kumar, M. Pokhrel, A. Martinez, R.C. Dennis, I.L. Villegas and D.K. Sardar, J. Alloys Compd., 513, 559 (2012); https://doi.org/10.1016/j.jallcom.2011.11.006.
G. Sharm, P. Chawla, S.P. Lochab and N. Singh, Chalcogenide Lett., 6, 445 (2009).
R. Chen and J. Appl. Phys, J. Phys. D, 2, 371 (1969); https://doi.org/10.1088/0022-3727/2/3/309.
M. Gokce, K.F. Oguz, T. Karali and M. Prokic, J. Phys. D Appl. Phys., 42, 105412 (2009); https://doi.org/10.1088/0022-3727/42/10/105412.
Y. Wang and L. Wang, J. Appl. Phys., 101, 053108 (2007); https://doi.org/10.1063/1.2435822.
Z.-X. Yuan, C. Chang, D. Mao and W. Ying, J. Alloys Compd., 377, 268 (2004); https://doi.org/10.1016/j.jallcom.2004.01.063.