Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectroscopic and Superparamagnetic Behaviour of Hausmannite Manganese Oxide Nanoparticles
Corresponding Author(s) : S. Karpagavalli
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Hausmannite manganese oxide (Mn3O4) nanoparticles are synthesized by microwave assisted solvothermal method. The calcination temperature of manganese oxide was determined from TG-DTA analysis.The structural characteristics of as prepared Mn3O4 nanoparticles are analyzed by powder X-ray diffraction. The Fourier transform infrared analysis is used to identify molecular structural changes of the manganese oxide sample. The SEM images revealed the surface morphology of the Mn3O4 nanoparticles and determined the size of the particle to be in the range of 30-40 nm. UV-visible spectrum showed that pure Mn3O4 nanoparticle exhibits maximum absorption at 396 nm. The cyclic voltammetry studies are used to evaluate specific capacitance and electrochemical behaviour of Mn3O4 nanoparticles. The magnetic properties of Mn3O4 nanoparticles are examined by vibrating sample magnetometer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.K. Choudhary, Nonoscience and Nanotechnology, Narosa Publishing House: New Delhi (2016).
- S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang and Y. Li, J. Phys. Chem., 13, 10652 (2011); https://doi.org/10.1039/c0cp90161j.
- J. Rupp and R. Birringer, Phys. Rev. B, 36, 7888 (1987); https://doi.org/10.1103/PhysRevB.36.7888.
- A. Akbarzadeh, M. Samiei and S. Davaran, Nanoscale Res. Lett., 7, 144 (2012); https://doi.org/10.1186/1556-276X-7-144.
- M. Sharrouf, R. Awad, M. Roumie and S. Marhaba, J. Mater. Sci. Appl., 6, 850 (2015); https://doi.org/10.4236/msa.2015.610087.
- R. Jothiramalingam and M.K. Wang, J. Porous Mater., 17, 677 (2011); https://doi.org/10.1007/s10934-009-9338-8.
- D. Jaganyi, M. Altaf and I. Wekesa, J. Appl. Nanosci., 3, 329 (2013); https://doi.org/10.1007/s13204-012-0135-3.
- A. Akbarzadeh, M. Samiei and S. Davaran, J. Nanoscale Res. Letts., 7, 144 (2012); https://doi.org/10.1186/1556-276X-7-144.
- A.M. Toufiq, F. Wang, Q. Javed, Q. Li and Y. Li, J. Appl. Phys. A Mater. Sci. Process., 116, 1127 (2014); https://doi.org/10.1007/s00339-013-8195-0.
- J.S. Sherin and J.K. Thomas, Int. J. Sci. Eng. Appl., 4, 250 (2015).
- R. Shokoohi, M.T. Samadi, G. Asgari, Y. Poureshgh, M.V. Tabar, K. Godini and A. Shabanloo, Avicenna J. Environ. Health Eng., (2015), https://doi.org/10.17795/ajehe-8565.
- G.A.M. Ali, L.L. Tan, R. Jose, M.M. Yusoff and K.F. Chong, J. Mater. Res. Bull., 60, 5 (2014); https://doi.org/10.1016/j.materresbull.2014.08.008.
- R. Song, H.-J. Wang and S.-H. Feng, Chem. Res. Chin. Univ., 28, 577 (2012).
- J. Valencia, N. Arias-Duque, O. Giraldo and A. Rosales-Rivera, Rev. Mex. Fis., 58, 151 (2012).
- N.J. Tharayil, R. Raveendran, A.V. Vaidyan and P.G. Chithra, Indian J. Eng. Mater. Sci., 15, 489 (2008).
- N.J. Tharayil, R. Raveendran and A.V. Vaidyan, Indian J. Pure Appl. Phys., 46, 47 (2008).
- Y. Luo, S. Fan, N. Hao, S. Zhong and W. Liu, Dalton Transc., 43, 15317 (2014); https://doi.org/10.1039/C4DT01695E.
- T. Theivasanthi and M. Alagar, Nano Biomed. Eng., 4, 58 (2012); https://doi.org/10.5101/nbe.v4i2.p58-65.
- H. Kumar, Manisha and P. Sangwan, Int. J. Chem. Chem. Eng., 3, 155 (2013).
- F.Y. Cheng, J. Chen, X.L. Gou and P.W. Shen, J. Adv. Mater., 17, 2753 (2005); https://doi.org/10.1002/adma.200500663.
- Y.-S. Ding, X.-F. Shen, S. Gomez, H. Luo, M. Aindow and S.L. Suib, J. Adv. Funct. Mater., 16, 549 (2006); https://doi.org/10.1002/adfm.200500436.
- K.S. Pugazhvadivu, K. Ramachandran and K. Tamilarasan, J. Phys. Procedia, 49, 205 (2013); https://doi.org/10.1016/j.phpro.2013.10.028.
- N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart and J.L. Dempsey, J. Chem. Educ., 95, 197 (2018); https://doi.org/10.1021/acs.jchemed.7b00361.
- B.C. Kim, C. Justin Raj, W.-J. Cho, W.-G. Lee, H.T. Jeong and K.H. Yu, J. Alloys Compd., 617, 491 (2014); https://doi.org/10.1016/j.jallcom.2014.08.018.
- B. Li, G. Gao, D. Zhai, C. Wei, Y. He, H. Du and F. Kang, Int. J. Electrochem. Sci., 8, 8740 (2013).
- H.-M. Lee, K. Lee and C.-K. Kim, J. Mater., 7, 265 (2014); https://doi.org/10.3390/ma7010265.
- S. Zhang, W. Liu, J. Ma and Y. Zhao, NSTI-Nanotech., 1, 555 (2010).
References
K.K. Choudhary, Nonoscience and Nanotechnology, Narosa Publishing House: New Delhi (2016).
S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang and Y. Li, J. Phys. Chem., 13, 10652 (2011); https://doi.org/10.1039/c0cp90161j.
J. Rupp and R. Birringer, Phys. Rev. B, 36, 7888 (1987); https://doi.org/10.1103/PhysRevB.36.7888.
A. Akbarzadeh, M. Samiei and S. Davaran, Nanoscale Res. Lett., 7, 144 (2012); https://doi.org/10.1186/1556-276X-7-144.
M. Sharrouf, R. Awad, M. Roumie and S. Marhaba, J. Mater. Sci. Appl., 6, 850 (2015); https://doi.org/10.4236/msa.2015.610087.
R. Jothiramalingam and M.K. Wang, J. Porous Mater., 17, 677 (2011); https://doi.org/10.1007/s10934-009-9338-8.
D. Jaganyi, M. Altaf and I. Wekesa, J. Appl. Nanosci., 3, 329 (2013); https://doi.org/10.1007/s13204-012-0135-3.
A. Akbarzadeh, M. Samiei and S. Davaran, J. Nanoscale Res. Letts., 7, 144 (2012); https://doi.org/10.1186/1556-276X-7-144.
A.M. Toufiq, F. Wang, Q. Javed, Q. Li and Y. Li, J. Appl. Phys. A Mater. Sci. Process., 116, 1127 (2014); https://doi.org/10.1007/s00339-013-8195-0.
J.S. Sherin and J.K. Thomas, Int. J. Sci. Eng. Appl., 4, 250 (2015).
R. Shokoohi, M.T. Samadi, G. Asgari, Y. Poureshgh, M.V. Tabar, K. Godini and A. Shabanloo, Avicenna J. Environ. Health Eng., (2015), https://doi.org/10.17795/ajehe-8565.
G.A.M. Ali, L.L. Tan, R. Jose, M.M. Yusoff and K.F. Chong, J. Mater. Res. Bull., 60, 5 (2014); https://doi.org/10.1016/j.materresbull.2014.08.008.
R. Song, H.-J. Wang and S.-H. Feng, Chem. Res. Chin. Univ., 28, 577 (2012).
J. Valencia, N. Arias-Duque, O. Giraldo and A. Rosales-Rivera, Rev. Mex. Fis., 58, 151 (2012).
N.J. Tharayil, R. Raveendran, A.V. Vaidyan and P.G. Chithra, Indian J. Eng. Mater. Sci., 15, 489 (2008).
N.J. Tharayil, R. Raveendran and A.V. Vaidyan, Indian J. Pure Appl. Phys., 46, 47 (2008).
Y. Luo, S. Fan, N. Hao, S. Zhong and W. Liu, Dalton Transc., 43, 15317 (2014); https://doi.org/10.1039/C4DT01695E.
T. Theivasanthi and M. Alagar, Nano Biomed. Eng., 4, 58 (2012); https://doi.org/10.5101/nbe.v4i2.p58-65.
H. Kumar, Manisha and P. Sangwan, Int. J. Chem. Chem. Eng., 3, 155 (2013).
F.Y. Cheng, J. Chen, X.L. Gou and P.W. Shen, J. Adv. Mater., 17, 2753 (2005); https://doi.org/10.1002/adma.200500663.
Y.-S. Ding, X.-F. Shen, S. Gomez, H. Luo, M. Aindow and S.L. Suib, J. Adv. Funct. Mater., 16, 549 (2006); https://doi.org/10.1002/adfm.200500436.
K.S. Pugazhvadivu, K. Ramachandran and K. Tamilarasan, J. Phys. Procedia, 49, 205 (2013); https://doi.org/10.1016/j.phpro.2013.10.028.
N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart and J.L. Dempsey, J. Chem. Educ., 95, 197 (2018); https://doi.org/10.1021/acs.jchemed.7b00361.
B.C. Kim, C. Justin Raj, W.-J. Cho, W.-G. Lee, H.T. Jeong and K.H. Yu, J. Alloys Compd., 617, 491 (2014); https://doi.org/10.1016/j.jallcom.2014.08.018.
B. Li, G. Gao, D. Zhai, C. Wei, Y. He, H. Du and F. Kang, Int. J. Electrochem. Sci., 8, 8740 (2013).
H.-M. Lee, K. Lee and C.-K. Kim, J. Mater., 7, 265 (2014); https://doi.org/10.3390/ma7010265.
S. Zhang, W. Liu, J. Ma and Y. Zhao, NSTI-Nanotech., 1, 555 (2010).