Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficiency Enhancement of Dye Sensitized Solar Cell Using Composite P25-TiO2/Carbon Nanotubes Photoanode with Platinum Counter Electrode
Corresponding Author(s) : Falah H. Hussien
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Present study includes enhancing the efficiency of the prepared dye sensitized solar cell (DSSC) by using Degussa (Evonik) P25 with carbon nanotubes (CNTs) composites as the photoanode electrode instead of using TiO2 alone. Platinum was used as the counter electrode with the use of natural pomegranate dye and KI/I2 as electrolyte solution. The morphology of the prepared composites were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron spectroscopy (SEM) and UV-visible diffuse reflectance spectra for all ratios prepared from P25/CNTs composites, The results showed that the CNTs dopant were incorporated into interstitial position of the P25 lattice nanoribbons with diameter of (30-75) nm and length of few micrometers. The calculated optical band gap for P25 and P25/CNTs in ratios 1:2.5% were 3.22 eV and 3.00, respectively. These modified properties of the P25/CNTs composites showed an important effect on the conversion efficiency of the assembled dye sensitized solar cells, where the efficiency of the P25 and P25/CNTs composites was 2.962% and 3.679%, respectively. This indicates that the efficiency of the DSSCs was increased relatively when using P25/CNTs composite instead of P25 alone as a photoanode when the other components of the cell were applied under the same preparation and fabrication conditions for the investigated DSSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O’Regan and M. Grätzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
- M. Grätzel, Prog. Photovolt. Res. Appl., 8, 171 (2000); https://doi.org/10.1002/(SICI)1099 159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
- Y. Hu, A. Abate, Y. Cao, A. Ivaturi, S.M. Zakeeruddin, M. Grätzel and N. Robertson, J. Phys. Chem. C, 120, 15027 (2016); https://doi.org/10.1021/acs.jpcc.6b03610
- I.P. Liu, W.N. Hung, H. Teng, S. Venkatesan, J.C. Lin and Y.L. Lee, J. Mater. Chem. A Mater. Energy Sustain., 5, 9190 (2017); https://doi.org/10.1039/C7TA01341H
- S.M. Gupta and M. Tripathi, Chin. Sci. Bull., 56, 1639 (2011); https://doi.org/10.1007/s11434-011-4476 1
- Q. Huaulme, L. Cabau and R. Demadrille, Chem, 4, 2267 (2018); https://doi.org/10.1016/j.chempr.2018.09.020
- M. Zi, M. Zhu, L. Chen, H. Wei, X. Yang and B. Cao, Ceram. Int., 40, 7965 (2014); https://doi.org/10.1016/j.ceramint.2013.12.146
- L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song and R. Fan, Inorg. Chem. Front., 5, 54 (2018); https://doi.org/10.1039/C7QI00503B
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
- V.M. Ramakrishnan, M. Natarajan, A. Santhanam, V. Asokan and D. Velauthapillai, Mater. Res. Bull., 97, 351 (2018); https://doi.org/10.1016/j.materresbull.2017.09.017
- Z.S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coord. Chem. Rev., 248, 1381 (2004); https://doi.org/10.1016/j.ccr.2004.03.006
- Y.K. Hwang, S.S. Park, J.H. Lim, Y.S. Won and S. Huh, J. Nanosci. Nanotechnol., 13, 2255 (2013); https://doi.org/10.1166/jnn.2013.6897
- Z. Zhao, G. Liu, B. Li, L. Guo, C. Fei, Y. Wang, L. Lv, X. Liu, J. Tian and G. Cao, J. Mater. Chem. A Mater. Energy Sustain., 3, 11320 (2015); https://doi.org/10.1039/C5TA01953B
- P. Zhao, S. Yao, M. Wang, B. Wang, P. Sun, F. Liu, X. Liang, Y. Sun and G. Lu, Electrochim. Acta, 170, 276 (2015); https://doi.org/10.1016/j.electacta.2015.04.102
- K.P. Ghoderao, S.N. Jamble and R.B. Kale, Superlattices Microstruct., 124, 121 (2018); https://doi.org/10.1016/j.spmi.2018.09.038
- B.R. Koo, H. An and H.J. Ahn, Ceram. Int., 42, 1666 (2016); https://doi.org/10.1016/j.ceramint.2015.09.120
- Z. Hou, W. Que, J. Ren, Y. Xing, H.A. Javed, T. Zhou and L.B. Kong, Ceram. Int., 41, S719 (2015); https://doi.org/10.1016/j.ceramint.2015.03.186
- J. Qu and C. Lai, J. Nanomater., 2013, 762730 (2013); https://doi.org/10.1155/2013/762730
- M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc., 126, 14943 (2004); https://doi.org/10.1021/ja048068s
- H. Park, Y. Park, W. Kim and W. Choi, J. Photochem. Photobiol. Photochem. Rev., 15, 1 (2013); https://doi.org/10.1016/j.jphotochemrev.2012.10.001
- A.H. Hammadi, A.M. Jasim, F.H. Abdulrazzak, A. Al-Sammarraie, Y. Cherifi, R. Boukherroub and F.H. Hussein, Materials, 13, 2342 (2020); https://doi.org/10.3390/ma13102342
- A.H. Hammadi, F.H. Abdulrazzak, A.J. Atiyah and F.H. Hussein, Org. Med. Chem. Int. J., 6, 555699 (2018); https://doi.org/10.19080/OMCIJ.2018.06.555699
- X. Liu, G. Xiao, W. Chen, Y. Xu and J. Wu, J. Biomed. Biotechnol., 2004, 326 (2004); https://doi.org/10.1155/S1110724304403052
- M.Q. Lokman, S. Shafie, S. Shaban, F. Ahmad, H. Jaafar, R.M. Rosnan, H. Yahaya and S.S. Abdullah, Materials, 12, 2111 (2019); https://doi.org/10.3390/ma12132111
- G. Yue, R. Cheng, X. Gao, L. Fan, Y. Mao, Y. Gao and F. Tan, Nanoscale Res. Lett., 15, 179 (2020); https://doi.org/10.1186/s11671-020-03410-0
- M. Halka, S. Smoleñ, I. Ledwozyw-Smoleñ and W. Sady, J. Plant Growth Regul., 39, 282 (2020); https://doi.org/10.1007/s00344-019-09981-2
- O. Carp, C.L. Huisman and A. Reller, Prog. Solid State Chem., 32, 33 (2004); https://doi.org/10.1016/j.progsolidstchem.2004.08.001
- N. Bouazza, M. Ouzzine, M.A. Lillo-Ródenas, D. Eder and A. Linares-Solano, Appl. Catal. B, 92, 377 (2009); https://doi.org/10.1016/j.apcatb.2009.08.017
- G. Liu, X. Yan, Z. Chen, X. Wang, L. Wang, G.Q. Lu and H.M. Cheng, J. Mater. Chem., 19, 6590 (2009); https://doi.org/10.1039/b902666e
- R. Saito, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B Condens. Matter Mater. Phys., 61, 2981 (2000); https://doi.org/10.1103/PhysRevB.61.2981
- M. Ding, D.C. Sorescu and A. Star, J. Am. Chem. Soc., 135, 9015 (2013); https://doi.org/10.1021/ja402887v
- H. Eskandarloo, A. Badiei, M.A. Behnajady and G.M. Ziarani, Chem. Eng. J., 270, 158 (2015); https://doi.org/10.1016/j.cej.2015.01.117
- M. Shaban, M.R. Abukhadra and A. Hamd, Clean Technol. Environ. Policy, 20, 13 (2018); https://doi.org/10.1007/s10098-017-1447-5
- M. Shaban, M.R. Abukhadra, A. Hamd, R.R. Amin and A. Abdel Khalek, J. Environ. Manage., 204, 189 (2017); https://doi.org/10.1016/j.jenvman.2017.08.048
References
B. O’Regan and M. Grätzel, Nature, 353, 737 (1991); https://doi.org/10.1038/353737a0
M. Grätzel, Prog. Photovolt. Res. Appl., 8, 171 (2000); https://doi.org/10.1002/(SICI)1099 159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
Y. Hu, A. Abate, Y. Cao, A. Ivaturi, S.M. Zakeeruddin, M. Grätzel and N. Robertson, J. Phys. Chem. C, 120, 15027 (2016); https://doi.org/10.1021/acs.jpcc.6b03610
I.P. Liu, W.N. Hung, H. Teng, S. Venkatesan, J.C. Lin and Y.L. Lee, J. Mater. Chem. A Mater. Energy Sustain., 5, 9190 (2017); https://doi.org/10.1039/C7TA01341H
S.M. Gupta and M. Tripathi, Chin. Sci. Bull., 56, 1639 (2011); https://doi.org/10.1007/s11434-011-4476 1
Q. Huaulme, L. Cabau and R. Demadrille, Chem, 4, 2267 (2018); https://doi.org/10.1016/j.chempr.2018.09.020
M. Zi, M. Zhu, L. Chen, H. Wei, X. Yang and B. Cao, Ceram. Int., 40, 7965 (2014); https://doi.org/10.1016/j.ceramint.2013.12.146
L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song and R. Fan, Inorg. Chem. Front., 5, 54 (2018); https://doi.org/10.1039/C7QI00503B
M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
V.M. Ramakrishnan, M. Natarajan, A. Santhanam, V. Asokan and D. Velauthapillai, Mater. Res. Bull., 97, 351 (2018); https://doi.org/10.1016/j.materresbull.2017.09.017
Z.S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coord. Chem. Rev., 248, 1381 (2004); https://doi.org/10.1016/j.ccr.2004.03.006
Y.K. Hwang, S.S. Park, J.H. Lim, Y.S. Won and S. Huh, J. Nanosci. Nanotechnol., 13, 2255 (2013); https://doi.org/10.1166/jnn.2013.6897
Z. Zhao, G. Liu, B. Li, L. Guo, C. Fei, Y. Wang, L. Lv, X. Liu, J. Tian and G. Cao, J. Mater. Chem. A Mater. Energy Sustain., 3, 11320 (2015); https://doi.org/10.1039/C5TA01953B
P. Zhao, S. Yao, M. Wang, B. Wang, P. Sun, F. Liu, X. Liang, Y. Sun and G. Lu, Electrochim. Acta, 170, 276 (2015); https://doi.org/10.1016/j.electacta.2015.04.102
K.P. Ghoderao, S.N. Jamble and R.B. Kale, Superlattices Microstruct., 124, 121 (2018); https://doi.org/10.1016/j.spmi.2018.09.038
B.R. Koo, H. An and H.J. Ahn, Ceram. Int., 42, 1666 (2016); https://doi.org/10.1016/j.ceramint.2015.09.120
Z. Hou, W. Que, J. Ren, Y. Xing, H.A. Javed, T. Zhou and L.B. Kong, Ceram. Int., 41, S719 (2015); https://doi.org/10.1016/j.ceramint.2015.03.186
J. Qu and C. Lai, J. Nanomater., 2013, 762730 (2013); https://doi.org/10.1155/2013/762730
M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc., 126, 14943 (2004); https://doi.org/10.1021/ja048068s
H. Park, Y. Park, W. Kim and W. Choi, J. Photochem. Photobiol. Photochem. Rev., 15, 1 (2013); https://doi.org/10.1016/j.jphotochemrev.2012.10.001
A.H. Hammadi, A.M. Jasim, F.H. Abdulrazzak, A. Al-Sammarraie, Y. Cherifi, R. Boukherroub and F.H. Hussein, Materials, 13, 2342 (2020); https://doi.org/10.3390/ma13102342
A.H. Hammadi, F.H. Abdulrazzak, A.J. Atiyah and F.H. Hussein, Org. Med. Chem. Int. J., 6, 555699 (2018); https://doi.org/10.19080/OMCIJ.2018.06.555699
X. Liu, G. Xiao, W. Chen, Y. Xu and J. Wu, J. Biomed. Biotechnol., 2004, 326 (2004); https://doi.org/10.1155/S1110724304403052
M.Q. Lokman, S. Shafie, S. Shaban, F. Ahmad, H. Jaafar, R.M. Rosnan, H. Yahaya and S.S. Abdullah, Materials, 12, 2111 (2019); https://doi.org/10.3390/ma12132111
G. Yue, R. Cheng, X. Gao, L. Fan, Y. Mao, Y. Gao and F. Tan, Nanoscale Res. Lett., 15, 179 (2020); https://doi.org/10.1186/s11671-020-03410-0
M. Halka, S. Smoleñ, I. Ledwozyw-Smoleñ and W. Sady, J. Plant Growth Regul., 39, 282 (2020); https://doi.org/10.1007/s00344-019-09981-2
O. Carp, C.L. Huisman and A. Reller, Prog. Solid State Chem., 32, 33 (2004); https://doi.org/10.1016/j.progsolidstchem.2004.08.001
N. Bouazza, M. Ouzzine, M.A. Lillo-Ródenas, D. Eder and A. Linares-Solano, Appl. Catal. B, 92, 377 (2009); https://doi.org/10.1016/j.apcatb.2009.08.017
G. Liu, X. Yan, Z. Chen, X. Wang, L. Wang, G.Q. Lu and H.M. Cheng, J. Mater. Chem., 19, 6590 (2009); https://doi.org/10.1039/b902666e
R. Saito, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B Condens. Matter Mater. Phys., 61, 2981 (2000); https://doi.org/10.1103/PhysRevB.61.2981
M. Ding, D.C. Sorescu and A. Star, J. Am. Chem. Soc., 135, 9015 (2013); https://doi.org/10.1021/ja402887v
H. Eskandarloo, A. Badiei, M.A. Behnajady and G.M. Ziarani, Chem. Eng. J., 270, 158 (2015); https://doi.org/10.1016/j.cej.2015.01.117
M. Shaban, M.R. Abukhadra and A. Hamd, Clean Technol. Environ. Policy, 20, 13 (2018); https://doi.org/10.1007/s10098-017-1447-5
M. Shaban, M.R. Abukhadra, A. Hamd, R.R. Amin and A. Abdel Khalek, J. Environ. Manage., 204, 189 (2017); https://doi.org/10.1016/j.jenvman.2017.08.048