Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Cu-Ag Bimetallic Nanoalloys as Antibacterial, Antidiabetic, Anticancerous Drug Biosynthesized from Curcuma aromatica
Corresponding Author(s) : Jasmine Jacob
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Drug resistant strains are formed due to unsuitable uses of antibiotics and insufficient check of infections. In present years, due to the extensive antimicrobial properties, metallic nanoparticles and metallo-pharmaceutics are highly proposed. Therefore, the synthesis of bimetallic nanoparticles are exploring towards the evolution of more productive amalgamative antimicrobials composed of combined metals. In this study, the green synthesis of Cu-Ag bimetallic nano-alloys using aqueous extract from the leaves of Curcuma aromatica is carried out. Synthesized Cu-Ag nano-alloys were characterized by UV-visible spectroscopy, scanning electron microscope (FE-SEM), transmission electron microscope (TEM-EDAX), cyclic voltammogram (CV). The characterization studies reveals that the biosynthesis produced core-shell Cu-Ag nano-alloys with spherical shape and average diameter size of 15 nm. The synthesized Cu-Ag nanoalloys exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria. The antidiabetic potential of Cu-Ag nanoalloys shows an effective inhibition against α-glucosidase. Anticancerous activity of Cu-Ag nanoalloys indicates its greater efficacy in destroying cancer cells. The biosynthesis of Cu-Ag nanoalloys can be employed in medical and industrial fields on a large scale with cost reductive method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Antimicrobial Resistance Collaborators, Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140 6736(21)02724-0
- E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia and E.B. Souto, Nanomaterials, 10, 292 (2020); https://doi.org/10.3390/nano10020292
- G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang and D.A. Stout, Int. J. Nanomedicine, 12, 3947 (2017); https://doi.org/10.2147/IJN.S134526
- N. Arora, K. Thangavelu and G.N. Karanikolos, Front Chem., 8, 412 (2020); https://doi.org/10.3389/fchem.2020.00412
- P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
- K.S. Mukunthan and S. Balaji, Int. J Green Nanotechnol., 4, 71 (2012); https://doi.org/10.1080/19430892.2012.676900
- M.F. Zayed, W.H. Eisa and A.A. Shabaka, Spectrochem. Acta Part A Mol. Spectrosc., 98, 423 (2012); https://doi.org/10.1016/j.saa.2012.08.072
- K. Chavez and G. Rosas, Microsc. Microanal., 25(S2), 1102 (2019); https://doi.org/10.1017/S143192761900624X
- G. Asghari, A. Mostajiran and M. Shebli, Res. Pharm. Sci., 4, 55 (2009).
- S. Li, Pharm. Crop., 5, 28 (2011); https://doi.org/10.2174/2210290601102010028
- A. Amalraj, A. Pius, S. Gopi and S. Gopi, J. Tradit. Complement. Med., 7, 205 (2017); https://doi.org/10.1016/j.jtcme.2016.05.005
- S. Bettini, R. Pagano, L. Valli and G. Giancane, Nanoscale, 6, 10113 (2014); https://doi.org/10.1039/C4NR02583K
- N. Muniyappan, M. Pandeeswaran and A. Amalraj, Environ. Chem. Ecotoxicology, 3, 117 (2021); https://doi.org/10.1016/j.enceco.2021.01.002
- N.R. Kim, K. Shin, I. Jung, M. Shim and H.M. Lee, J. Phys. Chem. C, 118, 26324 (2014); https://doi.org/10.1021/jp506069c
- R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x
- J. Saade and C.B. de Araujo, Mater. Chem. Phys., 148, 1184 (2014); https://doi.org/10.1016/j.matchemphys.2014.09.045
- Y. Cheng, F. Wang, C. Fang, J. Su and L. Yang, J. Alloys Compd., 658, 684 (2016); https://doi.org/10.1016/j.jallcom.2015.08.185
- Z. Zhanjiang and L. Jinpei, Rare Met. Mater. Eng., 41, 1700 (2012); https://doi.org/10.1016/S1875 5372(13)60008-9
- S. Hojaghani, K. Akhbari, M.H. Sadr and A. Morsali, Inorg. Chem. Commun., 44, 1 (2014); https://doi.org/10.1016/j.inoche.2014.02.030
- M. Valverde-Alva, T. Garcia-Fernandez, M. Villagran-Muniz, C. Sánchez-Aké, R. Castañeda-Guzmán, E. Esparza-Alegría, C.F. SánchezValdés, J.L.S. Llamazares and C.E.M. Herrera, Appl. Surf. Sci., 355, 341 (2015); https://doi.org/10.1016/j.apsusc.2015.07.133
- M. Miyakawa, N. Hiyoshi, M. Nishioka, H. Koda, K. Sato, A. Miyazawa and T.M. Suzuki, Nanoscale, 6, 8720 (2014); https://doi.org/10.1039/C4NR00118D
- H.M. Chen, R.S. Liu, L.Y. Jang, J.Y. Lee and S.F. Hu, Chem. Phys. Lett., 421, 118 (2006); https://doi.org/10.1016/j.cplett.2006.01.043
- C.K. Kim, G.J. Lee, M.K. Lee and C.K. Rhee, Powder Technol., 263, 1 (2014); https://doi.org/10.1016/j.powtec.2014.04.064
- F. Lan, R. Yang, Y. Xu, S. Qian, S. Zhang, H. Cheng and Y. Zhang, Nanomaterials, 8, 100 (2018); https://doi.org/10.3390/nano8020100
- M. Meena Kumari, J. Jacob and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 185 (2015); https://doi.org/10.1016/j.saa.2014.08.079
- A. Al-Asfar, Z. Zaheer and E.S. Aazam, J. Photochem. Photobiol. B, 185, 143 (2018); https://doi.org/10.1016/j.jphotobiol.2018.05.028
- A. Santovena-Uribe, J. Maya-Cornejo, D. Bahena, J. Ledesma, R. Perez and R. Esparza, Electrocatalysis, 11, 536 (2020); https://doi.org/10.1007/s12678-020-00613-y
- S.P. Minal and S. Prakash, Cu-Zn and Ag-Cu Bimetallic Nanoparticles as Larvicide to Control Malaria Parasite Vector: A Comparative Analysis, Humanitarian Technology Conference (RIO-HTC), Agra, India, 7906817 (2016).
- I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
- J. Watanabe, J. Kawabata, H. Kurihara and R. Niki, Biosci. Biotechnol. Biochem., 61, 177 (1997); https://doi.org/10.1271/bbb.61.177
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
- T.S. Abondanza, C.R. Oliveira, C.M.V. Barbosa, F.E.G. Pereira, R.L.O.R. Cunha, A.C.F. Caires, J.V. Comasseto, M.L.S. Queiroz, M.C. Valadares and C. Bincoletto, Food Toxicol., 46, 2540 (2008); https://doi.org/10.1016/j.fct.2008.04.010
- M.P. Navas and R.K. Soni, Plasmonics, 10, 681 (2015); https://doi.org/10.1007/s11468-014-9854-5
- D.C. Trinh, T.M.D. Dang, K.K. Huyuh, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol., 6, 025018 (2015); https://doi.org/10.1088/2043-6262/6/2/025018
References
Antimicrobial Resistance Collaborators, Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140 6736(21)02724-0
E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia and E.B. Souto, Nanomaterials, 10, 292 (2020); https://doi.org/10.3390/nano10020292
G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang and D.A. Stout, Int. J. Nanomedicine, 12, 3947 (2017); https://doi.org/10.2147/IJN.S134526
N. Arora, K. Thangavelu and G.N. Karanikolos, Front Chem., 8, 412 (2020); https://doi.org/10.3389/fchem.2020.00412
P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
K.S. Mukunthan and S. Balaji, Int. J Green Nanotechnol., 4, 71 (2012); https://doi.org/10.1080/19430892.2012.676900
M.F. Zayed, W.H. Eisa and A.A. Shabaka, Spectrochem. Acta Part A Mol. Spectrosc., 98, 423 (2012); https://doi.org/10.1016/j.saa.2012.08.072
K. Chavez and G. Rosas, Microsc. Microanal., 25(S2), 1102 (2019); https://doi.org/10.1017/S143192761900624X
G. Asghari, A. Mostajiran and M. Shebli, Res. Pharm. Sci., 4, 55 (2009).
S. Li, Pharm. Crop., 5, 28 (2011); https://doi.org/10.2174/2210290601102010028
A. Amalraj, A. Pius, S. Gopi and S. Gopi, J. Tradit. Complement. Med., 7, 205 (2017); https://doi.org/10.1016/j.jtcme.2016.05.005
S. Bettini, R. Pagano, L. Valli and G. Giancane, Nanoscale, 6, 10113 (2014); https://doi.org/10.1039/C4NR02583K
N. Muniyappan, M. Pandeeswaran and A. Amalraj, Environ. Chem. Ecotoxicology, 3, 117 (2021); https://doi.org/10.1016/j.enceco.2021.01.002
N.R. Kim, K. Shin, I. Jung, M. Shim and H.M. Lee, J. Phys. Chem. C, 118, 26324 (2014); https://doi.org/10.1021/jp506069c
R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x
J. Saade and C.B. de Araujo, Mater. Chem. Phys., 148, 1184 (2014); https://doi.org/10.1016/j.matchemphys.2014.09.045
Y. Cheng, F. Wang, C. Fang, J. Su and L. Yang, J. Alloys Compd., 658, 684 (2016); https://doi.org/10.1016/j.jallcom.2015.08.185
Z. Zhanjiang and L. Jinpei, Rare Met. Mater. Eng., 41, 1700 (2012); https://doi.org/10.1016/S1875 5372(13)60008-9
S. Hojaghani, K. Akhbari, M.H. Sadr and A. Morsali, Inorg. Chem. Commun., 44, 1 (2014); https://doi.org/10.1016/j.inoche.2014.02.030
M. Valverde-Alva, T. Garcia-Fernandez, M. Villagran-Muniz, C. Sánchez-Aké, R. Castañeda-Guzmán, E. Esparza-Alegría, C.F. SánchezValdés, J.L.S. Llamazares and C.E.M. Herrera, Appl. Surf. Sci., 355, 341 (2015); https://doi.org/10.1016/j.apsusc.2015.07.133
M. Miyakawa, N. Hiyoshi, M. Nishioka, H. Koda, K. Sato, A. Miyazawa and T.M. Suzuki, Nanoscale, 6, 8720 (2014); https://doi.org/10.1039/C4NR00118D
H.M. Chen, R.S. Liu, L.Y. Jang, J.Y. Lee and S.F. Hu, Chem. Phys. Lett., 421, 118 (2006); https://doi.org/10.1016/j.cplett.2006.01.043
C.K. Kim, G.J. Lee, M.K. Lee and C.K. Rhee, Powder Technol., 263, 1 (2014); https://doi.org/10.1016/j.powtec.2014.04.064
F. Lan, R. Yang, Y. Xu, S. Qian, S. Zhang, H. Cheng and Y. Zhang, Nanomaterials, 8, 100 (2018); https://doi.org/10.3390/nano8020100
M. Meena Kumari, J. Jacob and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 185 (2015); https://doi.org/10.1016/j.saa.2014.08.079
A. Al-Asfar, Z. Zaheer and E.S. Aazam, J. Photochem. Photobiol. B, 185, 143 (2018); https://doi.org/10.1016/j.jphotobiol.2018.05.028
A. Santovena-Uribe, J. Maya-Cornejo, D. Bahena, J. Ledesma, R. Perez and R. Esparza, Electrocatalysis, 11, 536 (2020); https://doi.org/10.1007/s12678-020-00613-y
S.P. Minal and S. Prakash, Cu-Zn and Ag-Cu Bimetallic Nanoparticles as Larvicide to Control Malaria Parasite Vector: A Comparative Analysis, Humanitarian Technology Conference (RIO-HTC), Agra, India, 7906817 (2016).
I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
J. Watanabe, J. Kawabata, H. Kurihara and R. Niki, Biosci. Biotechnol. Biochem., 61, 177 (1997); https://doi.org/10.1271/bbb.61.177
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
T.S. Abondanza, C.R. Oliveira, C.M.V. Barbosa, F.E.G. Pereira, R.L.O.R. Cunha, A.C.F. Caires, J.V. Comasseto, M.L.S. Queiroz, M.C. Valadares and C. Bincoletto, Food Toxicol., 46, 2540 (2008); https://doi.org/10.1016/j.fct.2008.04.010
M.P. Navas and R.K. Soni, Plasmonics, 10, 681 (2015); https://doi.org/10.1007/s11468-014-9854-5
D.C. Trinh, T.M.D. Dang, K.K. Huyuh, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol., 6, 025018 (2015); https://doi.org/10.1088/2043-6262/6/2/025018