This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption Ability of Cephalexin onto the Straw-Based Activated Carbon: Performance and Mechanism
Corresponding Author(s) : Lam Van Tan
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
A straw-activated carbon has been successfully synthesized with the high BET surface area, at 494.9240 m2/g, which is perfectly suitable for the adsorption of cephalexin antibiotic from aqueous water. It is noted that the adsorption capacity of straw-activated carbon is demonstrated by the effect of initial concentration, contact time, pH solution and dosage. The straw- activated carbon exhibited improved decontaminant efficiency towards cephalexin antibiotics. Quick and improved sorption could be attributable to the distinctive structural and compositional merits as well as the synergetic contribution of functional groups to surface material. Most interestingly, the adsorption capacity achieved at pH 6 was ~98.52%. A mechanism adsorption has been proposed to demonstrate adsorption of the straw-activated carbon (AC-S). By comparison with other studies, it is confirmed that AC-S in this study obtained a higher removal efficiency than other adsorbent materials, suggesting that straw-activated carbon may be an appropriate candidate to treat cephalexin from wastewater media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Nazari, H. Abolghasemi, M. Esmaieli and E.S. Pouya, Appl. Surf. Sci., 375, 144 (2016); https://doi.org/10.1016/j.apsusc.2016.03.096
- S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms, 7, 180 (2019);https://doi.org/10.3390/microorganisms7060180
- T.V. Tran, D.T.C. Nguyen, H.T.N. Le, T.T.K. Tu, N.D. Le, K.T. Lim, L.G. Bach and T.D. Nguyen, J. Environ. Chem. Eng., 7, 102881 (2019); https://doi.org/10.1016/j.jece.2019.102881
- A.J. Watkinson, E.J. Murby and S.D. Costanzo, Water Res., 41, 4164 (2007);https://doi.org/10.1016/j.watres.2007.04.005
- M.E.R. Jalil, M. Baschini and K. Sapag, Materials, 10, 1345 (2017); https://doi.org/10.3390/ma10121345
- W. Liu, H. Xie, J. Zhang and C. Zhang, Sci. China Chem., 55, 1959 (2012); https://doi.org/10.1007/s11426-011-4488-3
- S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016);https://doi.org/10.1016/j.susmat.2016.06.002
- X. (Eric) Hu, X. Luo, G. Xiao, Q. Yu, Y. Cui, G. Zhang, R. Zhang, Y. Liu, Y. Zhou and Z. Zeng, Adsorption (2020);https://doi.org/10.1007/s10450-020-00225-4
- P. Devi and A.K. Saroha, Sci. Total Environ., 578, 16 (2017);https://doi.org/10.1016/j.scitotenv.2016.10.220
- H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren and Y. Li, J. Hazard. Mater., 185, 1528 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.081
- H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao and D. Gu, Colloids Surf. A Physicochem. Eng. Asp., 517, 63 (2017); https://doi.org/10.1016/j.colsurfa.2017.01.005
- M.E. Vilt and W.S.W. Ho, J. Membr. Sci., 367, 71 (2011); https://doi.org/10.1016/j.memsci.2010.10.044
- P.T. Huong, K. Jitae, B.L. Giang, T.D. Nguyen and P.Q. Thang, Rend. Lincei Sci. Fis. Nat., 30, 637 (2019); https://doi.org/10.1007/s12210-019-00827-3
- N. Hagemann, K. Spokas, H.-P. Schmidt, R. Kägi, M.A. Böhler and T.D. Bucheli, Water, 10, 182 (2018);https://doi.org/10.3390/w10020182
- J.M. Diasa, M.C.M. Alvim-Ferraza, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manag., 85, 833 (2007);https://doi.org/10.1016/j.jenvman.2007.07.031
- J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez and C. Belver, C.J. Carbon Res., 6, 21 (2020); https://doi.org/10.3390/c6020021
- W.K. Pui, R. Yuso and M.K. Aroua, Rev. Chem. Eng., 35, 649 (2019);https://doi.org/10.1515/revce-2017-0057
- P. González-García, Renew. Sustain. Energy Rev., 82, 1393 (2018); https://doi.org/10.1016/j.rser.2017.04.117
- V. Bernal, L. Giraldo and J.C. Moreno-Piraján, C.J. Carbon Res., 4, 62 (2018); https://doi.org/10.3390/c4040062
- S. Wong, N. Ngadi, I.M. Inuwa and O. Hassan, J. Clean. Prod., 175, 361 (2018); https://doi.org/10.1016/j.jclepro.2017.12.059
- M.-H. Kim, K.-B. Kim, S.-M. Park and K.C. Roh, Sci. Rep., 6, 21182 (2016); https://doi.org/10.1038/srep21182
- B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Energy Environ. Sci., 9, 102 (2016); https://doi.org/10.1039/C5EE03149D
- K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016); https://doi.org/10.1016/j.cej.2015.10.099
- T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong and C.-H. Wang, Bioresour. Technol., 200, 350 (2016); https://doi.org/10.1016/j.biortech.2015.10.047
- M.A. Yahya, Z. Al-Qodah and C.W.Z. Ngah, Renew. Sustain. Energy Rev., 46, 218 (2015); https://doi.org/10.1016/j.rser.2015.02.051
- A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, S3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
- H. Demiral and C. Güngör, J. Clean. Prod., 124, 103 (2016); https://doi.org/10.1016/j.jclepro.2016.02.084
- S.M. Yakout and G.S. El-Deen, Arab. J. Chem., 9, S1155 (2016); https://doi.org/10.1016/j.arabjc.2011.12.002
- J. Schönherr, J.R. Buchheim, P. Scholz and P. Adelhelm, C.J. Carbon Res., 4, 21 (2018);https://doi.org/10.3390/c4020021
- Suhas, P.J.M. Carrott and M.M.L. Ribeiro Carrott, Bioresour. Technol., 98, 2301 (2007); https://doi.org/10.1016/j.biortech.2006.08.008
- H. Patel, Appl. Water Sci., 9, 45 (2019);https://doi.org/10.1007/s13201-019-0927-7
- M.J. Ahmed and S.K. Theydan, Chem. Eng. J., 211-212, 200 (2012); https://doi.org/10.1016/j.cej.2012.09.089
- D. Kalderis, S. Bethanis, P. Paraskeva and E. Diamadopoulos, Bioresour. Technol., 99, 6809 (2008); https://doi.org/10.1016/j.biortech.2008.01.041
- A.R. Yacob, Z. Abdul Majid and D.D.R. Sari, Malays. J. Anal. Sci., 12, 264 (2008).
- K.Y. Foo and B.H. Hameed, Micropor. Mesopor. Mater., 148, 191 (2012);https://doi.org/10.1016/j.micromeso.2011.08.005
- H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010); https://doi.org/10.1016/j.cej.2010.08.019
- S. Wu, M. Xie, Q. Zhang, L. Zhong, M. Chen and Z. Huang, Molecules, 22, 1117 (2017); https://doi.org/10.3390/molecules22071117
- T.V. Tran, D.T.C. Nguyen, H.T.N. Le, L.G. Bach, D.-V.N. Vo, K.T. Lim, L.X. Nong and T.D. Nguyen, Molecules, 24, 1887 (2019); https://doi.org/10.3390/molecules24101887
- L.G. Bach, T. Van Tran, T.D. Nguyen, T. Van Pham and S.T. Do, Res. Chem. Intermed., 44, 1661 (2018); https://doi.org/10.1007/s11164-017-3191-1
- M. Fronczak, K. Pyrzynska, A. Bhattarai, P. Pietrowski and M. Bystrzejewski, Int. J. Environ. Sci. Technol., 16, 7921 (2019); https://doi.org/10.1007/s13762-019-02398-0
- A. Contescu, C. Contescu, K. Putyera and J.A. Schwarz, Carbon, 35, 83 (1997); https://doi.org/10.1016/S0008-6223(96)00125-X
- Z. Yu, S. Peldszus and P.M. Huck, Environ. Sci. Technol., 43, 1474 (2009); https://doi.org/10.1021/es7032185
- J.A. Mattson, H.B. Mark Jr., M.D. Malbin, W.J. Weber Jr. and J.C. Crittenden, J. Colloid Interface Sci., 31, 116 (1969); https://doi.org/10.1016/0021-9797(69)90089-7
- H. Deng, L. Yang, G. Tao and J. Dai, J. Hazard. Mater., 166, 1514 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.080
- A. Asghar, Z. Khan, N. Maqbool, I.A. Qazi and M.A. Awan, J. Nanomater., 2015, 479103 (2015); https://doi.org/10.1155/2015/479103
References
G. Nazari, H. Abolghasemi, M. Esmaieli and E.S. Pouya, Appl. Surf. Sci., 375, 144 (2016); https://doi.org/10.1016/j.apsusc.2016.03.096
S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms, 7, 180 (2019);https://doi.org/10.3390/microorganisms7060180
T.V. Tran, D.T.C. Nguyen, H.T.N. Le, T.T.K. Tu, N.D. Le, K.T. Lim, L.G. Bach and T.D. Nguyen, J. Environ. Chem. Eng., 7, 102881 (2019); https://doi.org/10.1016/j.jece.2019.102881
A.J. Watkinson, E.J. Murby and S.D. Costanzo, Water Res., 41, 4164 (2007);https://doi.org/10.1016/j.watres.2007.04.005
M.E.R. Jalil, M. Baschini and K. Sapag, Materials, 10, 1345 (2017); https://doi.org/10.3390/ma10121345
W. Liu, H. Xie, J. Zhang and C. Zhang, Sci. China Chem., 55, 1959 (2012); https://doi.org/10.1007/s11426-011-4488-3
S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016);https://doi.org/10.1016/j.susmat.2016.06.002
X. (Eric) Hu, X. Luo, G. Xiao, Q. Yu, Y. Cui, G. Zhang, R. Zhang, Y. Liu, Y. Zhou and Z. Zeng, Adsorption (2020);https://doi.org/10.1007/s10450-020-00225-4
P. Devi and A.K. Saroha, Sci. Total Environ., 578, 16 (2017);https://doi.org/10.1016/j.scitotenv.2016.10.220
H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren and Y. Li, J. Hazard. Mater., 185, 1528 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.081
H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao and D. Gu, Colloids Surf. A Physicochem. Eng. Asp., 517, 63 (2017); https://doi.org/10.1016/j.colsurfa.2017.01.005
M.E. Vilt and W.S.W. Ho, J. Membr. Sci., 367, 71 (2011); https://doi.org/10.1016/j.memsci.2010.10.044
P.T. Huong, K. Jitae, B.L. Giang, T.D. Nguyen and P.Q. Thang, Rend. Lincei Sci. Fis. Nat., 30, 637 (2019); https://doi.org/10.1007/s12210-019-00827-3
N. Hagemann, K. Spokas, H.-P. Schmidt, R. Kägi, M.A. Böhler and T.D. Bucheli, Water, 10, 182 (2018);https://doi.org/10.3390/w10020182
J.M. Diasa, M.C.M. Alvim-Ferraza, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manag., 85, 833 (2007);https://doi.org/10.1016/j.jenvman.2007.07.031
J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez and C. Belver, C.J. Carbon Res., 6, 21 (2020); https://doi.org/10.3390/c6020021
W.K. Pui, R. Yuso and M.K. Aroua, Rev. Chem. Eng., 35, 649 (2019);https://doi.org/10.1515/revce-2017-0057
P. González-García, Renew. Sustain. Energy Rev., 82, 1393 (2018); https://doi.org/10.1016/j.rser.2017.04.117
V. Bernal, L. Giraldo and J.C. Moreno-Piraján, C.J. Carbon Res., 4, 62 (2018); https://doi.org/10.3390/c4040062
S. Wong, N. Ngadi, I.M. Inuwa and O. Hassan, J. Clean. Prod., 175, 361 (2018); https://doi.org/10.1016/j.jclepro.2017.12.059
M.-H. Kim, K.-B. Kim, S.-M. Park and K.C. Roh, Sci. Rep., 6, 21182 (2016); https://doi.org/10.1038/srep21182
B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Energy Environ. Sci., 9, 102 (2016); https://doi.org/10.1039/C5EE03149D
K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti and V.C. Almeida, Chem. Eng. J., 286, 476 (2016); https://doi.org/10.1016/j.cej.2015.10.099
T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong and C.-H. Wang, Bioresour. Technol., 200, 350 (2016); https://doi.org/10.1016/j.biortech.2015.10.047
M.A. Yahya, Z. Al-Qodah and C.W.Z. Ngah, Renew. Sustain. Energy Rev., 46, 218 (2015); https://doi.org/10.1016/j.rser.2015.02.051
A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, S3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
H. Demiral and C. Güngör, J. Clean. Prod., 124, 103 (2016); https://doi.org/10.1016/j.jclepro.2016.02.084
S.M. Yakout and G.S. El-Deen, Arab. J. Chem., 9, S1155 (2016); https://doi.org/10.1016/j.arabjc.2011.12.002
J. Schönherr, J.R. Buchheim, P. Scholz and P. Adelhelm, C.J. Carbon Res., 4, 21 (2018);https://doi.org/10.3390/c4020021
Suhas, P.J.M. Carrott and M.M.L. Ribeiro Carrott, Bioresour. Technol., 98, 2301 (2007); https://doi.org/10.1016/j.biortech.2006.08.008
H. Patel, Appl. Water Sci., 9, 45 (2019);https://doi.org/10.1007/s13201-019-0927-7
M.J. Ahmed and S.K. Theydan, Chem. Eng. J., 211-212, 200 (2012); https://doi.org/10.1016/j.cej.2012.09.089
D. Kalderis, S. Bethanis, P. Paraskeva and E. Diamadopoulos, Bioresour. Technol., 99, 6809 (2008); https://doi.org/10.1016/j.biortech.2008.01.041
A.R. Yacob, Z. Abdul Majid and D.D.R. Sari, Malays. J. Anal. Sci., 12, 264 (2008).
K.Y. Foo and B.H. Hameed, Micropor. Mesopor. Mater., 148, 191 (2012);https://doi.org/10.1016/j.micromeso.2011.08.005
H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010); https://doi.org/10.1016/j.cej.2010.08.019
S. Wu, M. Xie, Q. Zhang, L. Zhong, M. Chen and Z. Huang, Molecules, 22, 1117 (2017); https://doi.org/10.3390/molecules22071117
T.V. Tran, D.T.C. Nguyen, H.T.N. Le, L.G. Bach, D.-V.N. Vo, K.T. Lim, L.X. Nong and T.D. Nguyen, Molecules, 24, 1887 (2019); https://doi.org/10.3390/molecules24101887
L.G. Bach, T. Van Tran, T.D. Nguyen, T. Van Pham and S.T. Do, Res. Chem. Intermed., 44, 1661 (2018); https://doi.org/10.1007/s11164-017-3191-1
M. Fronczak, K. Pyrzynska, A. Bhattarai, P. Pietrowski and M. Bystrzejewski, Int. J. Environ. Sci. Technol., 16, 7921 (2019); https://doi.org/10.1007/s13762-019-02398-0
A. Contescu, C. Contescu, K. Putyera and J.A. Schwarz, Carbon, 35, 83 (1997); https://doi.org/10.1016/S0008-6223(96)00125-X
Z. Yu, S. Peldszus and P.M. Huck, Environ. Sci. Technol., 43, 1474 (2009); https://doi.org/10.1021/es7032185
J.A. Mattson, H.B. Mark Jr., M.D. Malbin, W.J. Weber Jr. and J.C. Crittenden, J. Colloid Interface Sci., 31, 116 (1969); https://doi.org/10.1016/0021-9797(69)90089-7
H. Deng, L. Yang, G. Tao and J. Dai, J. Hazard. Mater., 166, 1514 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.080
A. Asghar, Z. Khan, N. Maqbool, I.A. Qazi and M.A. Awan, J. Nanomater., 2015, 479103 (2015); https://doi.org/10.1155/2015/479103