Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Wood-Plastic Composites as Biocarriers in Moving Bed Biofilm Reactors
Corresponding Author(s) : N.D. Vu
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
In present study, a novel biocarrier was fabricated from wood and high density polyethylene (HDPE) using a single screw extruder. The effect of wood:plastic mass ratio on physico-chemical properties of the obtained wood plastic composite (WPC) was evaluated. While the tensile and flexural strengths were decreased, the sample density was increased with higher wood contents. The wood:plastic mass ratio of 1:1 was considered as the best for the production of WPC biocarriers. The role of this material in moving bed biofilm system was tested in a batch mode reactor having volume of 2 L with 20% filling by the biocarrier. The treatment efficiencies of organic matter, ammonia and phosphate were enhanced nearly two times. The results are attributed to heterogenous and porous surface of WPC, which enhances bacteria adhesion and pollutant removal. It demonstrates that WPC can be a potential biocarrier for use in moving bed biofilm reactors (MBBRs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Modin, F. Persson, B.M. Wilen and M. Hermansson, Crit. Rev. Environ. Sci. Technol., 46, 635 (2016); https://doi.org/10.1080/10643389.2016.1149903
- H. Guven, H. Ozgun, M.E. Ersahin, R.K. Dereli, I. Sinop and I. Ozturk, Environ. Sci. Pollut. Res., 26, 1770 (2019); https://doi.org/10.1007/s11356-018-3665-8
- M. Sarkar, V.K. Sangal and H. Bhunia, Environ. Eng. Res., 25, 400 (2020); https://doi.org/10.4491/eer.2019.114
- R. Chen, L.F. Ren, J. Shao, Y. He and X. Zhang, RSC Adv., 7, 2841 (2017); https://doi.org/10.1039/C7RA09225C
- D. Orhon, J. Chem. Technol. Biotechnol., 90, 608 (2015); https://doi.org/10.1002/jctb.4565
- M.A. Musa and S. Idrus, Sustainability, 13, 4656 (2021); https://doi.org/10.3390/su13094656
- H.T. Nhut, N.T.Q. Hung, T.C. Sac, N.H.K. Bang, T.Q. Tri, N.T. Hiep and N.M. Ky, Environ. Eng. Res., 25, 652 (2020); https://doi.org/10.4491/eer.2019.285
- Y. Dong, S.Q. Fan, Y. Shen, J.X. Yang, P. Yan, Y.P. Chen, J. Li, J.S. Guo, X.M. Duan, F. Fang and S.Y. Liu, Sci. Rep., 5, 12400 (2015); https://doi.org/10.1038/SREP12400
- S.M. Safwat, Int. J. Res., 6, 85 (2019);
- J.D. Rouse, O. Burica, M. Strazar and M. Levstek, Wat. Sci. Technol., 55, 135 (2007); https://doi.org/10.2166/wst.2007.251
- A. Barwal and R. Chaudhary, Rev. Environ. Sci. Biotechnol., 13, 285 (2014); https://doi.org/10.1007/s11157-014-9333-7
- L. Deng, W. Guo, H.H. Ngo, X. Zhang, X.C. Wang, Q. Zhang and R. Chen, Bioresour. Technol., 208, 87 (2016); https://doi.org/10.1016/j.biortech.2016.02.057
- S.K. Al-Amshawee, M.Y. Yunus and A.A. Azoddein, IOP Conf. Ser. Mater. Sci. Eng. 736, 072006 (2020); https://doi.org/10.1088/1757-899X/736/7/072006
- R. Gu, B.V. Kokta, D. Michalkova, B. Dimzoski, I. Fortelny, M. Slouf and Z. Krulis, J. Reinf. Plast. Compos., 29, 1 (2010); https://doi.org/10.1177/0731684410378543
- M. Katsikogianni and Y.F. Missirlis, Eur. Cells Mater., 8, 37 (2004); https://doi.org/10.22203/ecm.v008a05
- M. Gharechahi, H. Moosavi and M Forghani, J. Biomater. Nanobiotechnol., 3, 541 (2012); https://doi.org/10.4236/jbnb.2012.324056
- A. Krasowska and K. Sigler, Front. Cell. Infect. Microbiol., 4, 1 (2014); https://doi.org/10.3389/fcimb.2014.00112
- H. Fujitani, A. Kumagai, N. Ushiki, K. Momiuchi and S. Tsuneda, Front. Microbiol., 6, 1159 (2015); https://doi.org/10.3389/fmicb.2015.01159
- Y.H. Kim, J.H. Cho, Y.W. Lee and W.K. Lee, Biotechnol. Technol., 11, 773 (1997); https://doi.org/10.1023/A:1018460805328
- M.M.T. Khan, L.K. Ista, G.P. Lopez and A.J. Schuler, Environ. Sci. Technol., 45, 1055 (2011); https://doi.org/10.1021/es101389u
- M.M.T. Khan, T. Chapman, K. Cochran and A.J. Schuler, Water Res., 47, 2190 (2013); https://doi.org/10.1016/j.watres.2013.01.036
- C. Tarayre, H.T. Nguyen, A. Brognaux, A. Delepierre, L.D. Clercq, R. Charlier, E. Michels, E. Meers and F. Delvigne, Sensors, 16, 797 (2016); https://doi.org/10.3390/s16060797
- L.L. Blackall, G.R. Crocetti, A.M. Saunders and P.L. Bond, Antonie van Leeuwenhoek, 81, 681 (2002); https://doi.org/10.1023/a:1020538429009
- R.J. Seviour, T. Mino and M. Onuki, FEMS Microbio. Rev., 27, 99 (2003); https://doi.org/10.1016/S0168 6445(03)00021-4
- J.P. Bassin, R. Kleerebezem, M. Dezotti and M.C.M. Loosdrecht, Water Res., 46, 3805 (2012); https://doi.org/10.1016/j.watres.2012.04.015
References
O. Modin, F. Persson, B.M. Wilen and M. Hermansson, Crit. Rev. Environ. Sci. Technol., 46, 635 (2016); https://doi.org/10.1080/10643389.2016.1149903
H. Guven, H. Ozgun, M.E. Ersahin, R.K. Dereli, I. Sinop and I. Ozturk, Environ. Sci. Pollut. Res., 26, 1770 (2019); https://doi.org/10.1007/s11356-018-3665-8
M. Sarkar, V.K. Sangal and H. Bhunia, Environ. Eng. Res., 25, 400 (2020); https://doi.org/10.4491/eer.2019.114
R. Chen, L.F. Ren, J. Shao, Y. He and X. Zhang, RSC Adv., 7, 2841 (2017); https://doi.org/10.1039/C7RA09225C
D. Orhon, J. Chem. Technol. Biotechnol., 90, 608 (2015); https://doi.org/10.1002/jctb.4565
M.A. Musa and S. Idrus, Sustainability, 13, 4656 (2021); https://doi.org/10.3390/su13094656
H.T. Nhut, N.T.Q. Hung, T.C. Sac, N.H.K. Bang, T.Q. Tri, N.T. Hiep and N.M. Ky, Environ. Eng. Res., 25, 652 (2020); https://doi.org/10.4491/eer.2019.285
Y. Dong, S.Q. Fan, Y. Shen, J.X. Yang, P. Yan, Y.P. Chen, J. Li, J.S. Guo, X.M. Duan, F. Fang and S.Y. Liu, Sci. Rep., 5, 12400 (2015); https://doi.org/10.1038/SREP12400
S.M. Safwat, Int. J. Res., 6, 85 (2019);
J.D. Rouse, O. Burica, M. Strazar and M. Levstek, Wat. Sci. Technol., 55, 135 (2007); https://doi.org/10.2166/wst.2007.251
A. Barwal and R. Chaudhary, Rev. Environ. Sci. Biotechnol., 13, 285 (2014); https://doi.org/10.1007/s11157-014-9333-7
L. Deng, W. Guo, H.H. Ngo, X. Zhang, X.C. Wang, Q. Zhang and R. Chen, Bioresour. Technol., 208, 87 (2016); https://doi.org/10.1016/j.biortech.2016.02.057
S.K. Al-Amshawee, M.Y. Yunus and A.A. Azoddein, IOP Conf. Ser. Mater. Sci. Eng. 736, 072006 (2020); https://doi.org/10.1088/1757-899X/736/7/072006
R. Gu, B.V. Kokta, D. Michalkova, B. Dimzoski, I. Fortelny, M. Slouf and Z. Krulis, J. Reinf. Plast. Compos., 29, 1 (2010); https://doi.org/10.1177/0731684410378543
M. Katsikogianni and Y.F. Missirlis, Eur. Cells Mater., 8, 37 (2004); https://doi.org/10.22203/ecm.v008a05
M. Gharechahi, H. Moosavi and M Forghani, J. Biomater. Nanobiotechnol., 3, 541 (2012); https://doi.org/10.4236/jbnb.2012.324056
A. Krasowska and K. Sigler, Front. Cell. Infect. Microbiol., 4, 1 (2014); https://doi.org/10.3389/fcimb.2014.00112
H. Fujitani, A. Kumagai, N. Ushiki, K. Momiuchi and S. Tsuneda, Front. Microbiol., 6, 1159 (2015); https://doi.org/10.3389/fmicb.2015.01159
Y.H. Kim, J.H. Cho, Y.W. Lee and W.K. Lee, Biotechnol. Technol., 11, 773 (1997); https://doi.org/10.1023/A:1018460805328
M.M.T. Khan, L.K. Ista, G.P. Lopez and A.J. Schuler, Environ. Sci. Technol., 45, 1055 (2011); https://doi.org/10.1021/es101389u
M.M.T. Khan, T. Chapman, K. Cochran and A.J. Schuler, Water Res., 47, 2190 (2013); https://doi.org/10.1016/j.watres.2013.01.036
C. Tarayre, H.T. Nguyen, A. Brognaux, A. Delepierre, L.D. Clercq, R. Charlier, E. Michels, E. Meers and F. Delvigne, Sensors, 16, 797 (2016); https://doi.org/10.3390/s16060797
L.L. Blackall, G.R. Crocetti, A.M. Saunders and P.L. Bond, Antonie van Leeuwenhoek, 81, 681 (2002); https://doi.org/10.1023/a:1020538429009
R.J. Seviour, T. Mino and M. Onuki, FEMS Microbio. Rev., 27, 99 (2003); https://doi.org/10.1016/S0168 6445(03)00021-4
J.P. Bassin, R. Kleerebezem, M. Dezotti and M.C.M. Loosdrecht, Water Res., 46, 3805 (2012); https://doi.org/10.1016/j.watres.2012.04.015