Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Review on Plant Mediated Green Synthesis of Magnetite Nanoparticles for Pollution Abatement, Biomedical and Electronic Applications
Corresponding Author(s) : J. Laxmi Mangamma
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
In nature, the iron oxide is found in various forms. It is chemically mixed to form iron oxides (compounds). Magnetite has helpful uses in different areas, such as medicinal carriers, MRI-contracting agents, tumour therapies, industrial, laboratory dyes adsorption and wastewater treatment of toxic metals such as mercury and arsenic. Magnetic iron oxide nanoparticles are generated using various methods such as wet, dry or microbiological processes. The drawbacks of conventional nanoparticles including attrition and pyrolysis include a defective surface formation, poor efficiency rates, high development costs and high energy consumption. The first approach is the green biosynthesis of the nanoparticles in which the metal atoms are clusters. The organic compounds can both minimize and cover nanoparticles in the process of synthesis in green materials. In recent years, nanocarriers, especially for poorly soluble medicines, have received growing attention for oral chemotherapy. Early disease bacteria, biopsy, cells, DNA, glucose and viruses are identified by biosensing. While several basic characteristics have different advantages and potential for biomedical use of magnets of iron oxides, more toxicological research is required on as-synthesized magnet iron oxide nanoparticles with clearly defined requirements for toxicity assessment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- S. Panigrahi, S.K. Kundu, S. Ghosh, S. Nath and T. Pal, J. Nanopart. Res., 6, 411 (2004); https://doi.org/10.1007/s11051-004-6575-2
- G. Pandey and P. Jain, Beni-Suef Univ. J. Basic Appl. Sci., 9, 63 (2020); https://doi.org/10.1186/s43088 020-00085-5
- L. Vayssieres, Int. J. Nanotechnol., 1, 3728 (2004); https://doi.org/10.1504/IJNT.2004.003728
- M. Zhang, Ph.D. Thesis, Nonaqueous Synthesis of Metal Oxide Nanoparticles and their Surface Coating, University of New Orleans, USA (2008).
- M.L. Catherine Brechignac, Philippe Houdy, Nanomaterials and Nanochemistry, Springer European Materials Research Society: New York (2006).
- J.T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shiple, W. Yu, J. Falkner, A. Kan, M. Tomson and V.L. Colvin, Sci. Technol. Adv. Mater., 8, 71 (2007); https://doi.org/10.1016/j.stam.2006.10.005
- W. Wu, Z. Wu, T. Yu, C. Jiang and W.-S. Kim, Sci. Technol. Adv. Mater., 16, 23501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
- D.L. Huber, Small, 1, 482 (2005); https://doi.org/10.1002/smll.200500006
- R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Ed.: 2 (2006).
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
- A.S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003
- M. De Cuyper and M. Joniau, Eur. Biophys. J., 15, 311 (1988); https://doi.org/10.1007/BF00256482
- S. Hasany, I. Ahmed, J. Rajan and A. Rehman, Nanosci. Nanotechnol., 2, 148 (2012); https://doi.org/10.5923/j.nn.20120206.01
- B.R. Cuenya, Thin Solid Films, 518, 3127 (2010); https://doi.org/10.1016/j.tsf.2010.01.018
- W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008 9174-9
- S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang and A.A. Volinsky, Mater. Lett., 65, 1882 (2011); https://doi.org/10.1016/j.matlet.2011.03.065
- K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
- K.N. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002
- P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x
- M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
- M.F. Zayed, W.H. Eisa and A.A. Shabaka, Spectrochim. Acta A Mol. Biomol. Spectrosc., 98, 423 (2012); https://doi.org/10.1016/j.saa.2012.08.072
- E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag and S.L. Suib, Langmuir, 27, 264 (2011); https://doi.org/10.1021/la103190n
- M. Agnihotri, S. Joshi, A.R. Kumar, S. Zinjarde and S. Kulkarni, Mater. Lett., 63, 1231 (2009); https://doi.org/10.1016/j.matlet.2009.02.042
- M. Balamurugan, S. Saravanan and T. Soga, e-J. Surf. Sci. Nanotech., 12, 363 (2014); https://doi.org/10.1380/ejssnt.2014.363
- W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008 9174-9
- T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
- Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, T. Naiki and K.X. Lee, Arab. J. Chem., 13, 2287 (2020); https://doi.org/10.1016/j.arabjc.2018.04.013
- P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
- J. Virkutyte and R.S. Varma, Environmentally Friendly Preparation of Metal Nanoparticles in Sustainable Preparation of Metal Nanoparticles: Methods and Applications, The Royal Society of Chemistry: London, UK, pp. 7-33 (2013).
- M.Y. Rather and S. Sundarapandian, Appl. Nanosci., 10, 2219 (2020); https://doi.org/10.1007/s13204 020-01366-2
- A. Bouafia and S.E. Laouini, Mater. Lett., 265, 127364 (2020); https://doi.org/10.1016/j.matlet.2020.127364
- A.V. Ramesh, D. Rama Devi, S. Mohan Botsa and K. Basavaiah, J. Asian Ceram. Soc., 6, 145 (2018); https://doi.org/10.1080/21870764.2018.1459335
- N.D.S. Zambri, N.I. Taib, F. Abdul Latif and Z. Mohamed, Molecules, 24, 3803 (2019); https://doi.org/10.3390/molecules24203803
- V.C. Karade, P.P. Waifalkar, T.D. Dongle, S.C. Sahoo, P. Kollu, P.S. Patil and P.B. Patil, Mater. Res. Express, 4, 096102 (2017); https://doi.org/10.1088/2053-1591/aa892f
- Á.J. Ruíz-Baltazar, S.Y. Reyes-López, M.L. Mondragón-Sánchez, A.I. Robles-Cortés and R. Pérez, Results Phys., 12, 989 (2019); https://doi.org/10.1016/j.rinp.2018.12.037
- C. Prasad, S. Karlapudi, P. Venkateswarlu, I. Bahadur and S. Kumar, J. Mol. Liq., 240, 322 (2017); https://doi.org/10.1016/j.molliq.2017.05.100
- L. Hiremath, S.N. Kumar and P. Sukanya, Materials Today: Proc., 5, 21030 (2018); https://doi.org/10.1016/j.matpr.2018.06.496
- B. Kumar, K. Smita, L. Cumbal, A. Debut, S. Galeas and V.H. Guerrero, Mater. Chem. Phys., 179, 310 (2016); https://doi.org/10.1016/j.matchemphys.2016.05.045
- S. Kanagasubbulakshmi and K. Kadirvelu, Def. Life Sci. J., 2, 422 (2017); https://doi.org/10.14429/dlsj.2.12277
- I.P. Sari and Y. Yulizar, IOP Conf. Ser.: Mater. Sci. Eng., 191, 012014 (2017); https://doi.org/10.1088/1757-899X/191/1/012014
- S. Altaf, R. Zafar, W.Q. Zaman, S. Ahmad, K. Yaqoob, A. Syed, A.J. Khan, M. Bilal and M. Arshad, Ecotoxicol. Environ. Saf., 226, 112826 (2021); https://doi.org/10.1016/j.ecoenv.2021.112826
- H. Abuzied, H. Senbel, M. Awad and A. Abbas, Eng. Sci. Tech. Int. J., 23, 618 (2020); https://doi.org/10.1016/j.jestch.2019.07.003
- S. Groiss, R. Selvaraj, T. Varadavenkatesan and R. Vinayagam, J. Mol. Struct., 1128, 572 (2017); https://doi.org/10.1016/j.molstruc.2016.09.031
- G. Jagathesan and P. Rajiv, Biocatal. Agric. Biotechnol., 13, 90 (2018); https://doi.org/10.1016/j.bcab.2017.11.014
- M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T.D. Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba and M. Ashaduzzaman, Heliyon, 6, e04603 (2020); https://doi.org/10.1016/j.heliyon.2020.e04603
- V. Madhubala and T. Kalaivani, Appl. Surf. Sci., 449, 584 (2018); https://doi.org/10.1016/j.apsusc.2017.12.105
- A.V. Ramesh, B. Lavakusa, B.S. Mohan, Y.P. Kumar, D.R. Devi and K. Basavaiah, IOSR J. Appl. Chem., 10, 35 (2017); https://doi.org/10.9790/5736-1007013543
- M. Sravanthi, D.M. Kumar, M. Ravichandra, G. Vasu and K.P.J. Hemalatha, Int. J. Curr. Res. Acad. Rev., 4, 30 (2016); https://doi.org/10.20546/ijcrar.2016.408.003
- S. Phumying, S. Labuayai, V. Amornkitbamrung, E. Swatsitang, C. Thomas and S. Maensiri, Appl. Phys., A Mater. Sci. Process., 111, 1187 (2013); https://doi.org/10.1007/s00339-012-7340-5
- F. Buazar, M.H. BaghlaniNejazd, M. Badri, M. Kashisaz, A. KhalediNasab and F. Kroushawi, Stärke, 68, 796 (2016); https://doi.org/10.1002/star.201500347
- K. Basavaiah, M.H. Kahsay and D. RamaDevi, Emergent Mater., 1, 121 (2018); https://doi.org/10.1007/s42247-018-0005-1
- M. Mahdavi, F. Namvar, M.B. Ahmad and R. Mohamad, Molecules, 18, 5954 (2013); https://doi.org/10.3390/molecules18055954
- G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P.K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar and S. Sivaramakrishnan, Artif. Cells Nanomed. Biotechnol., 46, 589 (2018); https://doi.org/10.1080/21691401.2017.1332635
- Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B.B.A. Khairudin, S.E. Bt Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
- R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, K. Sadri and A. Hashemzadeh, Ceram. Int., 46, 3051 (2020); https://doi.org/10.1016/j.ceramint.2019.10.005
- L.P. Lingamdinne, Y.-Y. Chang, J.-K. Yang, J. Singh, E.-H. Choi, M. Shiratani, J.R. Koduru and P. Attri, Chem. Eng. J., 307, 74 (2017); https://doi.org/10.1016/j.cej.2016.08.067
- S. Venkateswarlu, D. Lee and M. Yoon, ACS Appl. Mater. Interfaces, 8, 23876 (2016); https://doi.org/10.1021/acsami.6b03583
- S. Venkateswarlu, Y.S. Rao, T. Balaji, B. Prathima and N.V.V. Jyothi, Mater. Lett., 100, 241 (2013); https://doi.org/10.1016/j.matlet.2013.03.018
- K.A. Tan, N. Morad, T.T. Teng and I. Norli, J. Taiwan Inst. Chem. Eng., 54, 96 (2015); https://doi.org/10.1016/j.jtice.2015.03.014
- S. Venkateswarlu, B. Natesh Kumar, C.H. Prasad, P. Venkateswarlu and N.V.V. Jyothi, Physica B, 449, 67 (2014); https://doi.org/10.1016/j.physb.2014.04.031
- C. Prasad, G. Yuvaraja and P. Venkateswarlu, J. Magn. Magn. Mater., 424, 376 (2017); https://doi.org/10.1016/j.jmmm.2016.10.084
- C. Prasad, S. Gangadhara and P. Venkateswarlu, Appl. Nanosci., 6, 797 (2016); https://doi.org/10.1007/s13204-015-0485-8
- Y. Cai, Y. Shen, A. Xie, S. Li and X. Wang, J. Magn. Magn. Mater., 322, 2938 (2010); https://doi.org/10.1016/j.jmmm.2010.05.009
- S. Ahmadi, M. Fazilati, H. Nazem and S.M. Mousavi, BioMed Res. Int., 2021, 8822645 (2021); https://doi.org/10.1155/2021/8822645
- F. Azadi, A. Karimi-Jashni and M.M. Zerafat, Ecotoxicol. Environ. Saf., 165, 467 (2018); https://doi.org/10.1016/j.ecoenv.2018.09.032
- K.D. Sirdeshpande, A. Sridhar, K.M. Cholkar and R. Selvaraj, Appl. Nanosci., 8, 675 (2018); https://doi.org/10.1007/s13204-018-0698-8
- P.K. Dhar, P. Saha, M.K. Hasan, M.K. Amin and M.R. Haque, Cleaner Eng. Technol., 3, 100117 (2021); https://doi.org/10.1016/j.clet.2021.100117
- S. Bishnoi, A. Kumar and R. Selvaraj, Mater. Res. Bull., 97, 121 (2018); https://doi.org/10.1016/j.materresbull.2017.08.040
- K. Nithya, A. Sathish, P. Senthil Kumar and T. Ramachandran, J. Ind. Eng. Chem., 59, 230 (2018); https://doi.org/10.1016/j.jiec.2017.10.028
- R. Chen, C. Zhi, H. Yang, Y. Bando, Z. Zhang, N. Sugiur and D. Golberg, J. Colloid Interface Sci., 359, 261 (2011); https://doi.org/10.1016/j.jcis.2011.02.071
- J. Hu, I.M.C. Lo and G.H. Chen, Sep. Purif. Technol., 58, 76 (2007); https://doi.org/10.1016/j.seppur.2007.07.023
- Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li, J. Zhang, Z. Liu and Y. Xiong, Chem. Eng. J., 175, 222 (2011); https://doi.org/10.1016/j.cej.2011.09.098
- H. Parham, B. Zargar and R. Shiralipour, J. Hazard. Mater., 205-206, 94 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.026
- B. Zhu, J. Zhao, H. Yu, L. Yan, Q. Wei and B. Du, Chem. Eng. J., 219, 411 (2013); https://doi.org/10.1016/j.cej.2012.12.068
- S. Pan, Y. Zhang, H. Shen and M. Hu, Chem. Eng. J., 210, 564 (2012); https://doi.org/10.1016/j.cej.2012.09.016
- S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu and J. Zhou, Chem. Eng. J., 226, 30 (2013); https://doi.org/10.1016/j.cej.2013.04.060
- A. Farrukh, A. Akram, A. Ghaffar, S. Hanif, A. Hamid, H. Duran and B. Yameen, Appl. Mater. Interfaces, 5, 3784 (2013); https://doi.org/10.1021/am400427n
- S. Shin and J. Jang, Chem. Commun., 4230 (2007); https://doi.org/10.1039/B707706H
- V.K. Gupta and A. Nayak, Chem. Eng. J., 180, 81 (2012); https://doi.org/10.1016/j.cej.2011.11.006
- X. Zhang, H. Niu, Y. Pan, Y. Shi and Y. Cai, Anal. Chem., 82, 2363 (2010); https://doi.org/10.1021/ac902589t
- J. Li, X. Zhao, Y. Shi, Y. Cai, S. Mou and G. Jiang, J. Chromatogr. A, 1180, 24 (2008); https://doi.org/10.1016/j.chroma.2007.12.028
- L. Sun, L.G. Chen, X. Sun, X.B. Du, Y.S. Yue, D.Q. He, H. Xu, Q. Zeng, H. Wang and L. Ding, Chemosphere, 77, 1306 (2009); https://doi.org/10.1016/j.chemosphere.2009.09.049
- Y. Yao, S. Miao, S. Liu, P. Ma, H. Sun and S. Wang, Chem. Eng. J., 184, 326 (2012); https://doi.org/10.1016/j.cej.2011.12.017
- F. Ge, H. Ye, M.-M. Li and B.-X. Zhao, Chem. Eng. J., 198-199, 11 (2012); https://doi.org/10.1016/j.cej.2012.05.074
- B. Zargar, H. Parham and A. Hatamie, Talanta, 77, 1328 (2009); https://doi.org/10.1016/j.talanta.2008.09.011
- X. Song and L. Gao, J. Am. Ceram. Soc., 90, 4015 (2007); https://doi.org/10.1111/j.1551-2916.2007.01989.x
- I. Ali, C. Peng, D. Lin and I. Naz, Green Process. Synth., 8, 256 (2019); https://doi.org/10.1515/gps 2018-0078
- G. Wang and H. Uludag, Expert Opin. Drug Deliv., 5, 499 (2008); https://doi.org/10.1517/17425247.5.5.499
- K. Pathak and S. Raghuvanshi, Clin. Pharmacokinet., 54, 325 (2015); https://doi.org/10.1007/s40262 015-0242-x
- S.P. Gubin, Magnetic Nanoparticles, Wiley-VCH: Weinheim (2009).
- L.H. Reddy, J.L. Arias, J. Nicolas and P. Couvreur, Chem. Rev., 112, 5818 (2012); https://doi.org/10.1021/cr300068p
- H.B. Na, I.C. Song and T. Hyeon, Adv. Mater., 21, 2133 (2009); https://doi.org/10.1002/adma.200802366
- B. Gleich and R. Weizenecker, Nature, 435, 1214 (2005); https://doi.org/10.1038/nature03808
- T.M. Buzug and J. Borgert, Magnetic Particle Imaging: A Novel SPIO Nanoparticle Imaging Technique, Springer, Heidelberg/Berlin, Ed.: 1 (2012).
- R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott and C.B. Taylor, Ann. Surg., 146, 596 (1957); https://doi.org/10.1097/00000658-195710000-00007
- M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi and W.J. Parak, Chem. Soc. Rev., 41, 4306 (2012); https://doi.org/10.1039/c2cs15337h
- Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson, J. Phys. D Appl. Phys., 36, R167 (2003); https://doi.org/10.1088/0022-3727/36/13/201
- S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003
- N. Abdullah, Master’s Thesis, Surface Functionalization of Magnetic Nanoparticles towards Biomedical Applications, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong,Wollongong, Australia (2018).
- O. Hosu, M. Tertis and C. Cristea, Magnetochemistry, 5, 55 (2019); https://doi.org/10.3390/magnetochemistry5040055
- Y. Saylan, Ö. Erdem, S. Ünal and A. Denizli, Biosensors, 9, 65 (2019); https://doi.org/10.3390/bios9020065
- J. Vidic, M. Manzano, C.-M. Chang and N. Jaffrezic-Renault, Vet. Res., 48, 11 (2017); https://doi.org/10.1186/s13567-017-0418-5
- A.P.M. Vieira, L.S. Arias, F.N. de Souza Neto, A.M. Kubo, B.H.R. Lima, E.R. de Camargo, J.P. Pessan, A.C.B. Delbem and D.R. Monteiro, Colloids Surf. B Biointerfaces, 174, 224 (2019); https://doi.org/10.1016/j.colsurfb.2018.11.023
- P. Mehrotra, J. Oral Biol. Craniofac. Res., 6, 153 (2016); https://doi.org/10.1016/j.jobcr.2015.12.002
- W. Wu, Z. Wu, T. Yu, C.Z. Jiang and W.-S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
- X. Sun, Q. Li, X. Wang and S. Du, Anal. Lett., 45, 1604 (2012); https://doi.org/10.1080/00032719.2012.677782
- H. Ding, J.S. Wei, N. Zhong, Q.Y. Gao and H.M. Xiong, Langmuir, 33, 12635 (2017); https://doi.org/10.1021/acs.langmuir.7b02385
- L. Ye, BiOX (X = Cl, Br, and I) Photocatalysts. In: Semiconductor Photocatalysis: Materials, Mechanisms and Applications, IntechOpen, pp 273 (2016).
- L. Zhang, Y. He, X. Yang, H. Yuan, Z. Du and Y. Wu, Chem. Eng. J., 278, 129 (2015); https://doi.org/10.1016/j.cej.2014.11.096
- H. Jia, X.J. Liu, X. Chen, X.X. Guan, X.C. Zheng and P. Liu, Int. J. Hydrogen Energy, 42, 28425 (2017); https://doi.org/10.1016/j.ijhydene.2017.09.172
- S. Qiao and R. Wang, Petrol. Coal, 60, 474 (2018).
- A.F.S. Zanato, V.C. Silva, D.A.C. Lima and M.J. Jacinto, Appl. Nanosci., 7, 781 (2017); https://doi.org/10.1007/s13204-017-0612-9
- P. Liu, S. Liu and S.W. Bian, J. Mater. Sci., 52, 12121 (2017); https://doi.org/10.1007/s10853-017-1357 2
- N. Guillou, Q. Gao, P.M. Forster, J.S. Chang, M. Noguès, S. Park, G. Férey and A.K. Cheetham, Angew. Chem. Int. Ed., 40, 2831 (2001); https://doi.org/10.1002/1521-3773(20010803)40:15<2831::AID ANIE2831>3.0.CO;2-Z
- V.R. Devadasu, V. Bhardwaj and M.N.V.R. Kumar, Chem. Rev., 113, 1686 (2013); https://doi.org/10.1021/cr300047q
- C. Sun, J.S.H. Lee and M. Zhang, Adv. Drug Deliv. Rev., 60, 1252 (2008); https://doi.org/10.1016/j.addr.2008.03.018
- A.H. Lu, E.L. Salabas and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866
- C.J. Rivet, Y. Yuan, D.A. Borca-Tasciuc and R.J. Gilbert, Chem. Res. Toxicol., 25, 153 (2012); https://doi.org/10.1021/tx200369s
- M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser and A. Petri-Fink, Chem. Rev., 112, 2323 (2012); https://doi.org/10.1021/cr2002596
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller., Chem. Rev., 110, 2574 (2010); https://doi.org/10.1021/cr900197g
References
I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
S. Panigrahi, S.K. Kundu, S. Ghosh, S. Nath and T. Pal, J. Nanopart. Res., 6, 411 (2004); https://doi.org/10.1007/s11051-004-6575-2
G. Pandey and P. Jain, Beni-Suef Univ. J. Basic Appl. Sci., 9, 63 (2020); https://doi.org/10.1186/s43088 020-00085-5
L. Vayssieres, Int. J. Nanotechnol., 1, 3728 (2004); https://doi.org/10.1504/IJNT.2004.003728
M. Zhang, Ph.D. Thesis, Nonaqueous Synthesis of Metal Oxide Nanoparticles and their Surface Coating, University of New Orleans, USA (2008).
M.L. Catherine Brechignac, Philippe Houdy, Nanomaterials and Nanochemistry, Springer European Materials Research Society: New York (2006).
J.T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shiple, W. Yu, J. Falkner, A. Kan, M. Tomson and V.L. Colvin, Sci. Technol. Adv. Mater., 8, 71 (2007); https://doi.org/10.1016/j.stam.2006.10.005
W. Wu, Z. Wu, T. Yu, C. Jiang and W.-S. Kim, Sci. Technol. Adv. Mater., 16, 23501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
D.L. Huber, Small, 1, 482 (2005); https://doi.org/10.1002/smll.200500006
R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Ed.: 2 (2006).
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
A.S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003
M. De Cuyper and M. Joniau, Eur. Biophys. J., 15, 311 (1988); https://doi.org/10.1007/BF00256482
S. Hasany, I. Ahmed, J. Rajan and A. Rehman, Nanosci. Nanotechnol., 2, 148 (2012); https://doi.org/10.5923/j.nn.20120206.01
B.R. Cuenya, Thin Solid Films, 518, 3127 (2010); https://doi.org/10.1016/j.tsf.2010.01.018
W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008 9174-9
S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang and A.A. Volinsky, Mater. Lett., 65, 1882 (2011); https://doi.org/10.1016/j.matlet.2011.03.065
K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
K.N. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002
P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x
M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
M.F. Zayed, W.H. Eisa and A.A. Shabaka, Spectrochim. Acta A Mol. Biomol. Spectrosc., 98, 423 (2012); https://doi.org/10.1016/j.saa.2012.08.072
E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag and S.L. Suib, Langmuir, 27, 264 (2011); https://doi.org/10.1021/la103190n
M. Agnihotri, S. Joshi, A.R. Kumar, S. Zinjarde and S. Kulkarni, Mater. Lett., 63, 1231 (2009); https://doi.org/10.1016/j.matlet.2009.02.042
M. Balamurugan, S. Saravanan and T. Soga, e-J. Surf. Sci. Nanotech., 12, 363 (2014); https://doi.org/10.1380/ejssnt.2014.363
W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008 9174-9
T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, T. Naiki and K.X. Lee, Arab. J. Chem., 13, 2287 (2020); https://doi.org/10.1016/j.arabjc.2018.04.013
P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
J. Virkutyte and R.S. Varma, Environmentally Friendly Preparation of Metal Nanoparticles in Sustainable Preparation of Metal Nanoparticles: Methods and Applications, The Royal Society of Chemistry: London, UK, pp. 7-33 (2013).
M.Y. Rather and S. Sundarapandian, Appl. Nanosci., 10, 2219 (2020); https://doi.org/10.1007/s13204 020-01366-2
A. Bouafia and S.E. Laouini, Mater. Lett., 265, 127364 (2020); https://doi.org/10.1016/j.matlet.2020.127364
A.V. Ramesh, D. Rama Devi, S. Mohan Botsa and K. Basavaiah, J. Asian Ceram. Soc., 6, 145 (2018); https://doi.org/10.1080/21870764.2018.1459335
N.D.S. Zambri, N.I. Taib, F. Abdul Latif and Z. Mohamed, Molecules, 24, 3803 (2019); https://doi.org/10.3390/molecules24203803
V.C. Karade, P.P. Waifalkar, T.D. Dongle, S.C. Sahoo, P. Kollu, P.S. Patil and P.B. Patil, Mater. Res. Express, 4, 096102 (2017); https://doi.org/10.1088/2053-1591/aa892f
Á.J. Ruíz-Baltazar, S.Y. Reyes-López, M.L. Mondragón-Sánchez, A.I. Robles-Cortés and R. Pérez, Results Phys., 12, 989 (2019); https://doi.org/10.1016/j.rinp.2018.12.037
C. Prasad, S. Karlapudi, P. Venkateswarlu, I. Bahadur and S. Kumar, J. Mol. Liq., 240, 322 (2017); https://doi.org/10.1016/j.molliq.2017.05.100
L. Hiremath, S.N. Kumar and P. Sukanya, Materials Today: Proc., 5, 21030 (2018); https://doi.org/10.1016/j.matpr.2018.06.496
B. Kumar, K. Smita, L. Cumbal, A. Debut, S. Galeas and V.H. Guerrero, Mater. Chem. Phys., 179, 310 (2016); https://doi.org/10.1016/j.matchemphys.2016.05.045
S. Kanagasubbulakshmi and K. Kadirvelu, Def. Life Sci. J., 2, 422 (2017); https://doi.org/10.14429/dlsj.2.12277
I.P. Sari and Y. Yulizar, IOP Conf. Ser.: Mater. Sci. Eng., 191, 012014 (2017); https://doi.org/10.1088/1757-899X/191/1/012014
S. Altaf, R. Zafar, W.Q. Zaman, S. Ahmad, K. Yaqoob, A. Syed, A.J. Khan, M. Bilal and M. Arshad, Ecotoxicol. Environ. Saf., 226, 112826 (2021); https://doi.org/10.1016/j.ecoenv.2021.112826
H. Abuzied, H. Senbel, M. Awad and A. Abbas, Eng. Sci. Tech. Int. J., 23, 618 (2020); https://doi.org/10.1016/j.jestch.2019.07.003
S. Groiss, R. Selvaraj, T. Varadavenkatesan and R. Vinayagam, J. Mol. Struct., 1128, 572 (2017); https://doi.org/10.1016/j.molstruc.2016.09.031
G. Jagathesan and P. Rajiv, Biocatal. Agric. Biotechnol., 13, 90 (2018); https://doi.org/10.1016/j.bcab.2017.11.014
M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T.D. Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba and M. Ashaduzzaman, Heliyon, 6, e04603 (2020); https://doi.org/10.1016/j.heliyon.2020.e04603
V. Madhubala and T. Kalaivani, Appl. Surf. Sci., 449, 584 (2018); https://doi.org/10.1016/j.apsusc.2017.12.105
A.V. Ramesh, B. Lavakusa, B.S. Mohan, Y.P. Kumar, D.R. Devi and K. Basavaiah, IOSR J. Appl. Chem., 10, 35 (2017); https://doi.org/10.9790/5736-1007013543
M. Sravanthi, D.M. Kumar, M. Ravichandra, G. Vasu and K.P.J. Hemalatha, Int. J. Curr. Res. Acad. Rev., 4, 30 (2016); https://doi.org/10.20546/ijcrar.2016.408.003
S. Phumying, S. Labuayai, V. Amornkitbamrung, E. Swatsitang, C. Thomas and S. Maensiri, Appl. Phys., A Mater. Sci. Process., 111, 1187 (2013); https://doi.org/10.1007/s00339-012-7340-5
F. Buazar, M.H. BaghlaniNejazd, M. Badri, M. Kashisaz, A. KhalediNasab and F. Kroushawi, Stärke, 68, 796 (2016); https://doi.org/10.1002/star.201500347
K. Basavaiah, M.H. Kahsay and D. RamaDevi, Emergent Mater., 1, 121 (2018); https://doi.org/10.1007/s42247-018-0005-1
M. Mahdavi, F. Namvar, M.B. Ahmad and R. Mohamad, Molecules, 18, 5954 (2013); https://doi.org/10.3390/molecules18055954
G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P.K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar and S. Sivaramakrishnan, Artif. Cells Nanomed. Biotechnol., 46, 589 (2018); https://doi.org/10.1080/21691401.2017.1332635
Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B.B.A. Khairudin, S.E. Bt Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, K. Sadri and A. Hashemzadeh, Ceram. Int., 46, 3051 (2020); https://doi.org/10.1016/j.ceramint.2019.10.005
L.P. Lingamdinne, Y.-Y. Chang, J.-K. Yang, J. Singh, E.-H. Choi, M. Shiratani, J.R. Koduru and P. Attri, Chem. Eng. J., 307, 74 (2017); https://doi.org/10.1016/j.cej.2016.08.067
S. Venkateswarlu, D. Lee and M. Yoon, ACS Appl. Mater. Interfaces, 8, 23876 (2016); https://doi.org/10.1021/acsami.6b03583
S. Venkateswarlu, Y.S. Rao, T. Balaji, B. Prathima and N.V.V. Jyothi, Mater. Lett., 100, 241 (2013); https://doi.org/10.1016/j.matlet.2013.03.018
K.A. Tan, N. Morad, T.T. Teng and I. Norli, J. Taiwan Inst. Chem. Eng., 54, 96 (2015); https://doi.org/10.1016/j.jtice.2015.03.014
S. Venkateswarlu, B. Natesh Kumar, C.H. Prasad, P. Venkateswarlu and N.V.V. Jyothi, Physica B, 449, 67 (2014); https://doi.org/10.1016/j.physb.2014.04.031
C. Prasad, G. Yuvaraja and P. Venkateswarlu, J. Magn. Magn. Mater., 424, 376 (2017); https://doi.org/10.1016/j.jmmm.2016.10.084
C. Prasad, S. Gangadhara and P. Venkateswarlu, Appl. Nanosci., 6, 797 (2016); https://doi.org/10.1007/s13204-015-0485-8
Y. Cai, Y. Shen, A. Xie, S. Li and X. Wang, J. Magn. Magn. Mater., 322, 2938 (2010); https://doi.org/10.1016/j.jmmm.2010.05.009
S. Ahmadi, M. Fazilati, H. Nazem and S.M. Mousavi, BioMed Res. Int., 2021, 8822645 (2021); https://doi.org/10.1155/2021/8822645
F. Azadi, A. Karimi-Jashni and M.M. Zerafat, Ecotoxicol. Environ. Saf., 165, 467 (2018); https://doi.org/10.1016/j.ecoenv.2018.09.032
K.D. Sirdeshpande, A. Sridhar, K.M. Cholkar and R. Selvaraj, Appl. Nanosci., 8, 675 (2018); https://doi.org/10.1007/s13204-018-0698-8
P.K. Dhar, P. Saha, M.K. Hasan, M.K. Amin and M.R. Haque, Cleaner Eng. Technol., 3, 100117 (2021); https://doi.org/10.1016/j.clet.2021.100117
S. Bishnoi, A. Kumar and R. Selvaraj, Mater. Res. Bull., 97, 121 (2018); https://doi.org/10.1016/j.materresbull.2017.08.040
K. Nithya, A. Sathish, P. Senthil Kumar and T. Ramachandran, J. Ind. Eng. Chem., 59, 230 (2018); https://doi.org/10.1016/j.jiec.2017.10.028
R. Chen, C. Zhi, H. Yang, Y. Bando, Z. Zhang, N. Sugiur and D. Golberg, J. Colloid Interface Sci., 359, 261 (2011); https://doi.org/10.1016/j.jcis.2011.02.071
J. Hu, I.M.C. Lo and G.H. Chen, Sep. Purif. Technol., 58, 76 (2007); https://doi.org/10.1016/j.seppur.2007.07.023
Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li, J. Zhang, Z. Liu and Y. Xiong, Chem. Eng. J., 175, 222 (2011); https://doi.org/10.1016/j.cej.2011.09.098
H. Parham, B. Zargar and R. Shiralipour, J. Hazard. Mater., 205-206, 94 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.026
B. Zhu, J. Zhao, H. Yu, L. Yan, Q. Wei and B. Du, Chem. Eng. J., 219, 411 (2013); https://doi.org/10.1016/j.cej.2012.12.068
S. Pan, Y. Zhang, H. Shen and M. Hu, Chem. Eng. J., 210, 564 (2012); https://doi.org/10.1016/j.cej.2012.09.016
S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu and J. Zhou, Chem. Eng. J., 226, 30 (2013); https://doi.org/10.1016/j.cej.2013.04.060
A. Farrukh, A. Akram, A. Ghaffar, S. Hanif, A. Hamid, H. Duran and B. Yameen, Appl. Mater. Interfaces, 5, 3784 (2013); https://doi.org/10.1021/am400427n
S. Shin and J. Jang, Chem. Commun., 4230 (2007); https://doi.org/10.1039/B707706H
V.K. Gupta and A. Nayak, Chem. Eng. J., 180, 81 (2012); https://doi.org/10.1016/j.cej.2011.11.006
X. Zhang, H. Niu, Y. Pan, Y. Shi and Y. Cai, Anal. Chem., 82, 2363 (2010); https://doi.org/10.1021/ac902589t
J. Li, X. Zhao, Y. Shi, Y. Cai, S. Mou and G. Jiang, J. Chromatogr. A, 1180, 24 (2008); https://doi.org/10.1016/j.chroma.2007.12.028
L. Sun, L.G. Chen, X. Sun, X.B. Du, Y.S. Yue, D.Q. He, H. Xu, Q. Zeng, H. Wang and L. Ding, Chemosphere, 77, 1306 (2009); https://doi.org/10.1016/j.chemosphere.2009.09.049
Y. Yao, S. Miao, S. Liu, P. Ma, H. Sun and S. Wang, Chem. Eng. J., 184, 326 (2012); https://doi.org/10.1016/j.cej.2011.12.017
F. Ge, H. Ye, M.-M. Li and B.-X. Zhao, Chem. Eng. J., 198-199, 11 (2012); https://doi.org/10.1016/j.cej.2012.05.074
B. Zargar, H. Parham and A. Hatamie, Talanta, 77, 1328 (2009); https://doi.org/10.1016/j.talanta.2008.09.011
X. Song and L. Gao, J. Am. Ceram. Soc., 90, 4015 (2007); https://doi.org/10.1111/j.1551-2916.2007.01989.x
I. Ali, C. Peng, D. Lin and I. Naz, Green Process. Synth., 8, 256 (2019); https://doi.org/10.1515/gps 2018-0078
G. Wang and H. Uludag, Expert Opin. Drug Deliv., 5, 499 (2008); https://doi.org/10.1517/17425247.5.5.499
K. Pathak and S. Raghuvanshi, Clin. Pharmacokinet., 54, 325 (2015); https://doi.org/10.1007/s40262 015-0242-x
S.P. Gubin, Magnetic Nanoparticles, Wiley-VCH: Weinheim (2009).
L.H. Reddy, J.L. Arias, J. Nicolas and P. Couvreur, Chem. Rev., 112, 5818 (2012); https://doi.org/10.1021/cr300068p
H.B. Na, I.C. Song and T. Hyeon, Adv. Mater., 21, 2133 (2009); https://doi.org/10.1002/adma.200802366
B. Gleich and R. Weizenecker, Nature, 435, 1214 (2005); https://doi.org/10.1038/nature03808
T.M. Buzug and J. Borgert, Magnetic Particle Imaging: A Novel SPIO Nanoparticle Imaging Technique, Springer, Heidelberg/Berlin, Ed.: 1 (2012).
R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott and C.B. Taylor, Ann. Surg., 146, 596 (1957); https://doi.org/10.1097/00000658-195710000-00007
M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi and W.J. Parak, Chem. Soc. Rev., 41, 4306 (2012); https://doi.org/10.1039/c2cs15337h
Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson, J. Phys. D Appl. Phys., 36, R167 (2003); https://doi.org/10.1088/0022-3727/36/13/201
S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003
N. Abdullah, Master’s Thesis, Surface Functionalization of Magnetic Nanoparticles towards Biomedical Applications, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong,Wollongong, Australia (2018).
O. Hosu, M. Tertis and C. Cristea, Magnetochemistry, 5, 55 (2019); https://doi.org/10.3390/magnetochemistry5040055
Y. Saylan, Ö. Erdem, S. Ünal and A. Denizli, Biosensors, 9, 65 (2019); https://doi.org/10.3390/bios9020065
J. Vidic, M. Manzano, C.-M. Chang and N. Jaffrezic-Renault, Vet. Res., 48, 11 (2017); https://doi.org/10.1186/s13567-017-0418-5
A.P.M. Vieira, L.S. Arias, F.N. de Souza Neto, A.M. Kubo, B.H.R. Lima, E.R. de Camargo, J.P. Pessan, A.C.B. Delbem and D.R. Monteiro, Colloids Surf. B Biointerfaces, 174, 224 (2019); https://doi.org/10.1016/j.colsurfb.2018.11.023
P. Mehrotra, J. Oral Biol. Craniofac. Res., 6, 153 (2016); https://doi.org/10.1016/j.jobcr.2015.12.002
W. Wu, Z. Wu, T. Yu, C.Z. Jiang and W.-S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
X. Sun, Q. Li, X. Wang and S. Du, Anal. Lett., 45, 1604 (2012); https://doi.org/10.1080/00032719.2012.677782
H. Ding, J.S. Wei, N. Zhong, Q.Y. Gao and H.M. Xiong, Langmuir, 33, 12635 (2017); https://doi.org/10.1021/acs.langmuir.7b02385
L. Ye, BiOX (X = Cl, Br, and I) Photocatalysts. In: Semiconductor Photocatalysis: Materials, Mechanisms and Applications, IntechOpen, pp 273 (2016).
L. Zhang, Y. He, X. Yang, H. Yuan, Z. Du and Y. Wu, Chem. Eng. J., 278, 129 (2015); https://doi.org/10.1016/j.cej.2014.11.096
H. Jia, X.J. Liu, X. Chen, X.X. Guan, X.C. Zheng and P. Liu, Int. J. Hydrogen Energy, 42, 28425 (2017); https://doi.org/10.1016/j.ijhydene.2017.09.172
S. Qiao and R. Wang, Petrol. Coal, 60, 474 (2018).
A.F.S. Zanato, V.C. Silva, D.A.C. Lima and M.J. Jacinto, Appl. Nanosci., 7, 781 (2017); https://doi.org/10.1007/s13204-017-0612-9
P. Liu, S. Liu and S.W. Bian, J. Mater. Sci., 52, 12121 (2017); https://doi.org/10.1007/s10853-017-1357 2
N. Guillou, Q. Gao, P.M. Forster, J.S. Chang, M. Noguès, S. Park, G. Férey and A.K. Cheetham, Angew. Chem. Int. Ed., 40, 2831 (2001); https://doi.org/10.1002/1521-3773(20010803)40:15<2831::AID ANIE2831>3.0.CO;2-Z
V.R. Devadasu, V. Bhardwaj and M.N.V.R. Kumar, Chem. Rev., 113, 1686 (2013); https://doi.org/10.1021/cr300047q
C. Sun, J.S.H. Lee and M. Zhang, Adv. Drug Deliv. Rev., 60, 1252 (2008); https://doi.org/10.1016/j.addr.2008.03.018
A.H. Lu, E.L. Salabas and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866
C.J. Rivet, Y. Yuan, D.A. Borca-Tasciuc and R.J. Gilbert, Chem. Res. Toxicol., 25, 153 (2012); https://doi.org/10.1021/tx200369s
M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser and A. Petri-Fink, Chem. Rev., 112, 2323 (2012); https://doi.org/10.1021/cr2002596
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller., Chem. Rev., 110, 2574 (2010); https://doi.org/10.1021/cr900197g