Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Experimental Analysis of Silk Cocoon Layer-PANI Polymer Composite as Electrode for Thermoelectric Generator Application
Corresponding Author(s) : Dinesh Rangappa
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
In this study, a silk cocoon layer (SCL) was surface coated with polyaniline (PANI), which serves as an electrode for thermoelectric generator (TEG) application. Here, the PANI was synthesized using the sol-gel method and coated on both sides of SCL using doctor-blade method. The efficiency of converting thermal energy into electrical energy was analyzed with a temperature range from 30 to 60 ºC. The TG-DTA analysis was performed to evaluate thermal stability. An evident change in the resistance was noticed for both cold (~5 °C) and heat (60 ºC) respective temperatures. Thus, this study provides a new biomaterial-based TEG electrode for waste heat recovery system/thermal management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zhu, R. Yang, S. Wang and Z.L. Wang, Nano Lett., 10, 3151 (2010); https://doi.org/10.1021/nl101973h K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang and K.J. Lee, Adv. Mater., 24, 2999 (2012); https://doi.org/10.1002/adma.201200105
- C. Chang, V.H. Tran, J. Wang, Y.K. Fuh and L. Lin, Nano Lett., 10, 726 (2010); https://doi.org/10.1021/nl9040719
- F.-R. Fan, Z.-Q. Tian and Z. Lin Wang, Nano Energy, 1, 328 (2012); https://doi.org/10.1016/j.nanoen.2012.01.004
- P.M. Kumar, V. Jagadeesh Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna and H. Wei, Designs, 3, 22 (2019); https://doi.org/10.3390/designs3020022
- Z.B. Tang, Y.D. Deng, C.Q. Su, W.W. Shuai and C.J. Xie, Case Stud. Therm. Eng., 5, 143 (2015); https://doi.org/10.1016/j.csite.2015.03.006
- K.K. Jung, Y. Jung, C.J. Choi, J.M. Lee and J.S. Ko, Curr. Appl. Phys., 16, 1442 (2016); https://doi.org/10.1016/j.cap.2016.08.010
- C. Gould, N. Shammas, S. Grainger and I. Taylor, A Comprehensive Review of Thermoelectric Technology, Microelectrical, and Power Generation Properties; In Proceedings of the 26th International Conference on Microelectronics, Nis, Serbia & Montenegro, pp. 329-332, 11–14 May (2008).
- A. Shakouri, Annu. Rev. Mater. Res., 41, 399 (2011); https://doi.org/10.1146/annurev-matsci-062910 100445
- R. Ahiska and S. Dislitas, Energy Convers. Manage., 52, 27 (2011); https://doi.org/10.1016/j.enconman.2010.06.023
- R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu and C. Müller, Chem. Soc. Rev., 45, 6147 (2016); https://doi.org/10.1039/C6CS00149A
- Y. Chen, Y. Zhao and Z. Liang, Energy Environ. Sci., 8, 401 (2015); https://doi.org/10.1039/C4EE03297G
- Y. Du, S.Z. Shen, K. Cai and P.S. Casey, Prog. Polym. Sci., 37, 820 (2012); https://doi.org/10.1016/j.progpolymsci.2011.11.003
- G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond and D.L. Kaplan, Biomaterials, 24, 401 (2003); https://doi.org/10.1016/S0142-9612(02)00353-8
- B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee and W.H. Park, Biomaterials, 25, 1289 (2004); https://doi.org/10.1016/j.biomaterials.2003.08.045
- B. Saravanakumar, R. Mohan, K. Thiyagarajan and S.J. Kim, RSC Adv., 3, 16646 (2013); https://doi.org/10.1039/c3ra40447a
- B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc and R.A. Segalman, Nat. Rev. Mater., 1, 16050 (2016); https://doi.org/10.1038/natrevmats.2016.50
- M. He, F. Qiu and Z. Lin, Energy Environ. Sci., 6, 1352 (2013); https://doi.org/10.1039/c3ee24193a
- H. Kaneko, T. Ishiguro, A. Takahashi and J. Tsukamoto, Synth. Met., 57, 4900 (1993); https://doi.org/10.1016/0379-6779(93)90836-L
- N.T. Kemp, A.B. Kaiser, C.J. Liu, B. Chapman, O. Mercier, A.M. Carr, H.J. Trodahl, R.G. Buckley, A.C. Partridge, J.Y. Lee, C.Y. Kim, A. Bartl, L. Dunsch, W.T. Smith and J.S. Shapiro, J. Polym. Sci., B, Polym. Phys., 37, 953 (1999); https://doi.org/10.1002/(SICI)1099-0488(19990501)37:9<953::AID-POLB7>3.0.CO;2-L
- B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li and Z. Zhang, Chin. Phys. Lett., 27, 057201 (2010); https://doi.org/10.1088/0256-307X/27/5/057201
- O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J. B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren and X. Crispin, Nat. Mater., 13, 190 (2014); https://doi.org/10.1038/nmat3824
- G.H. Kim, L. Shao, K. Zhang and K.P. Pipe, Nat. Mater., 12, 719 (2013); https://doi.org/10.1038/nmat3635
- O. Bubnova, M. Berggren and X. Crispin, J. Am. Chem. Soc., 134, 16456 (2012); https://doi.org/10.1021/ja305188r
- O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, Nat. Mater., 10, 429 (2011); https://doi.org/10.1038/nmat3012
- S.Y. Qu, Q. Yao, L.M. Wang, Z.H. Chen, K.Q. Xu, H.R. Zeng, W. Shi, T. Zhang, C. Uher and L. Chen, NPG Asia Mater., 8, e292 (2016); https://doi.org/10.1038/am.2016.97
- Q. Zhang, Y.M. Sun, W. Xu and D.B. Zhu, Energy Environ. Sci., 5, 9639 (2012); https://doi.org/10.1039/c2ee23006b
- L.M. Wang, Q. Yao, J.X. Xiao, K.Y. Zeng, W. Shi, S.Y. Qu and L. Chen, Chem. Asian J., 11, 1955 (2016); https://doi.org/10.1002/asia.201600493
- Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun, H. Zeng, Z. Jin, X. Huang and L. Chen, J. Mater. Chem. A Mater. Energy Sustain., 2, 2634 (2014); https://doi.org/10.1039/C3TA14008C
- H. Wang, L. Yin, X. Pu and C. Yu, Polymer, 54, 1136 (2013); https://doi.org/10.1016/j.polymer.2012.12.038
- M.A. Kamarudin, S.R. Sahamir, R.S. Datta, B.D. Long, M.F. Mohd Sabri and S. Mohd Said, Scient. World J., 2013, 713640 (2013); https://doi.org/10.1155/2013/713640
- Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu and D. Zhu, Adv. Mater., 24, 932 (2012); https://doi.org/10.1002/adma.201104305
- R. Yue, S. Chen, C. Liu, B. Lu, J. Xu, J. Wang and G. Liu, J. Solid State Electrochem., 16, 117 (2012); https://doi.org/10.1007/s10008-011-1292-0
- M. Lee, Y.G. Ko, J.B. Lee, W.H. Park, D. Cho and O.H. Kwon, Macromol. Res., 22, 746 (2014); https://doi.org/10.1007/s13233-014-2096-8
- D.N. Rockwood, R.C. Preda, T. Yucel, X.Q. Wang, M.L. Lovett and D.L. Kaplan, Nat. Protoc., 6, 1612 (2011); https://doi.org/10.1038/nprot.2011.379
- J. Perez-Rigueiro, C. Viney, J. Llorca and M. Elices, J. Appl. Polym. Sci., 75, 1270 (2000); https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1270:: AID-APP8>3.0.CO;2-C
- G.Y. Liu, Q. Tang, Y.N. Yu, J. Li, J.W. Luo and M.Z. Li, Polym. Adv. Technol., 25, 1596 (2014); https://doi.org/10.1002/pat.3408
- B.M. Min, L. Jeong, K.Y. Lee and W.H. Park, Macromol. Biosci., 6, 285 (2006); https://doi.org/10.1002/mabi.200500246
- F. Zhang, B.Q. Zuo and L. Bai, J. Mater. Sci., 44, 5682 (2009); https://doi.org/10.1007/s10853-009-3800 5
- S. Ling, D.L. Kaplan and M.J. Buehler, Nat. Rev. Mater., 3, 18016 (2018); https://doi.org/10.1038/natrevmats.2018.16
- Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan and S. Ling, Adv. Funct. Mater., 28, 1805305 (2018); https://doi.org/10.1002/adfm.201805305
- S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler and D.L. Kaplan, Prog. Polym. Sci., 85, 1 (2018); https://doi.org/10.1016/j.progpolymsci.2018.06.004
- J.L. Yarger, B.R. Cherry and A. van der Vaart, Nat. Rev. Mater., 3, 18008 (2018); https://doi.org/10.1038/natrevmats.2018.8
- R. Xiong, A.M. Grant, R. Ma, S. Zhang and V.V. Tsukruk, Mater. Sci. Eng., 125, 1 (2018); https://doi.org/10.1016/j.mser.2018.01.002
- H.-J. Kim, J.-H. Kim, K.-W. Jun, J.-H. Kim, W.-C. Seung, O.H. Kwon, J.-Y. Park, S.-W. Kim and I.-K. Oh, Adv. Energy Mater., 6, 1502329 (2016); https://doi.org/10.1002/aenm.201502329
- Y. Xue, S. Lofland and X. Hu, Polymers, 11, 456 (2019); https://doi.org/10.3390/polym11030456
- X. Jin, J. Zhang, W. Gao, J. Li and X. Wang, Biointerphases, 9, 031013 (2014); https://doi.org/10.1116/1.4890982
- J. Zhang, R. Rajkhowa, J. Li, X. Liu and X. Wang, Mater. Des., 49, 842 (2013); https://doi.org/10.1016/j.matdes.2013.02.006
- S. Xu, Z. Xu, J. Starrett, C. Hayashi and X. Wang, Polymer, 55, 1845 (2014); https://doi.org/10.1016/j.polymer.2014.02.020
- A. Delan, M. Rennau, S.E. Schulz and T. Gessner, Microelectron. Eng., 70, 280 (2003); https://doi.org/10.1016/S0167-9317(03)00417-9
- J. Zhou, Z. Zhao, R. Hu, J. Yang, H. Xiao, Y. Liu and M. Lu, Mater. Des., 191, 108636 (2020); https://doi.org/10.1016/j.matdes.2020.108636
- J.-T. Wang, L.-L. Li, M.-Y. Zhang, S.-L. Liu, L.-H. Jiang and Q. Shen, Mater. Sci. Eng. C, 34, 417 (2014); https://doi.org/10.1016/j.msec.2013.09.041
- J.-T. Wang, L.-L. Li, L. Feng, J.-F. Li, L.-H. Jiang and Q. Shen, Int. J. Biol. Macromol., 63, 205 (2014); https://doi.org/10.1016/j.ijbiomac.2013.11.006
- K.I. Lee, X. Wang, X. Guo, K.-F. Yung and B. Fei, Int. J. Biol. Macromol., 95, 826 (2017); https://doi.org/10.1016/j.ijbiomac.2016.11.090
- B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi and I. Visoly-Fisher, Sci. Rep., 7, 45030 (2017); https://doi.org/10.1038/srep45030
- S. Ambalagi, M. Devendrappa, S. Nagaraja and B. Sannakki, IOP Conf. Series Mater. Sci. Eng., 310, 012081 (2018); https://doi.org/10.1088/1757-899X/310/1/012081
- Z. Ma, W. Wang and D. Yu, J. Mater. Sci., 55, 796 (2020); https://doi.org/10.1007/s10853-019-04035-0
References
G. Zhu, R. Yang, S. Wang and Z.L. Wang, Nano Lett., 10, 3151 (2010); https://doi.org/10.1021/nl101973h K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang and K.J. Lee, Adv. Mater., 24, 2999 (2012); https://doi.org/10.1002/adma.201200105
C. Chang, V.H. Tran, J. Wang, Y.K. Fuh and L. Lin, Nano Lett., 10, 726 (2010); https://doi.org/10.1021/nl9040719
F.-R. Fan, Z.-Q. Tian and Z. Lin Wang, Nano Energy, 1, 328 (2012); https://doi.org/10.1016/j.nanoen.2012.01.004
P.M. Kumar, V. Jagadeesh Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna and H. Wei, Designs, 3, 22 (2019); https://doi.org/10.3390/designs3020022
Z.B. Tang, Y.D. Deng, C.Q. Su, W.W. Shuai and C.J. Xie, Case Stud. Therm. Eng., 5, 143 (2015); https://doi.org/10.1016/j.csite.2015.03.006
K.K. Jung, Y. Jung, C.J. Choi, J.M. Lee and J.S. Ko, Curr. Appl. Phys., 16, 1442 (2016); https://doi.org/10.1016/j.cap.2016.08.010
C. Gould, N. Shammas, S. Grainger and I. Taylor, A Comprehensive Review of Thermoelectric Technology, Microelectrical, and Power Generation Properties; In Proceedings of the 26th International Conference on Microelectronics, Nis, Serbia & Montenegro, pp. 329-332, 11–14 May (2008).
A. Shakouri, Annu. Rev. Mater. Res., 41, 399 (2011); https://doi.org/10.1146/annurev-matsci-062910 100445
R. Ahiska and S. Dislitas, Energy Convers. Manage., 52, 27 (2011); https://doi.org/10.1016/j.enconman.2010.06.023
R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu and C. Müller, Chem. Soc. Rev., 45, 6147 (2016); https://doi.org/10.1039/C6CS00149A
Y. Chen, Y. Zhao and Z. Liang, Energy Environ. Sci., 8, 401 (2015); https://doi.org/10.1039/C4EE03297G
Y. Du, S.Z. Shen, K. Cai and P.S. Casey, Prog. Polym. Sci., 37, 820 (2012); https://doi.org/10.1016/j.progpolymsci.2011.11.003
G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond and D.L. Kaplan, Biomaterials, 24, 401 (2003); https://doi.org/10.1016/S0142-9612(02)00353-8
B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee and W.H. Park, Biomaterials, 25, 1289 (2004); https://doi.org/10.1016/j.biomaterials.2003.08.045
B. Saravanakumar, R. Mohan, K. Thiyagarajan and S.J. Kim, RSC Adv., 3, 16646 (2013); https://doi.org/10.1039/c3ra40447a
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc and R.A. Segalman, Nat. Rev. Mater., 1, 16050 (2016); https://doi.org/10.1038/natrevmats.2016.50
M. He, F. Qiu and Z. Lin, Energy Environ. Sci., 6, 1352 (2013); https://doi.org/10.1039/c3ee24193a
H. Kaneko, T. Ishiguro, A. Takahashi and J. Tsukamoto, Synth. Met., 57, 4900 (1993); https://doi.org/10.1016/0379-6779(93)90836-L
N.T. Kemp, A.B. Kaiser, C.J. Liu, B. Chapman, O. Mercier, A.M. Carr, H.J. Trodahl, R.G. Buckley, A.C. Partridge, J.Y. Lee, C.Y. Kim, A. Bartl, L. Dunsch, W.T. Smith and J.S. Shapiro, J. Polym. Sci., B, Polym. Phys., 37, 953 (1999); https://doi.org/10.1002/(SICI)1099-0488(19990501)37:9<953::AID-POLB7>3.0.CO;2-L
B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li and Z. Zhang, Chin. Phys. Lett., 27, 057201 (2010); https://doi.org/10.1088/0256-307X/27/5/057201
O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J. B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren and X. Crispin, Nat. Mater., 13, 190 (2014); https://doi.org/10.1038/nmat3824
G.H. Kim, L. Shao, K. Zhang and K.P. Pipe, Nat. Mater., 12, 719 (2013); https://doi.org/10.1038/nmat3635
O. Bubnova, M. Berggren and X. Crispin, J. Am. Chem. Soc., 134, 16456 (2012); https://doi.org/10.1021/ja305188r
O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, Nat. Mater., 10, 429 (2011); https://doi.org/10.1038/nmat3012
S.Y. Qu, Q. Yao, L.M. Wang, Z.H. Chen, K.Q. Xu, H.R. Zeng, W. Shi, T. Zhang, C. Uher and L. Chen, NPG Asia Mater., 8, e292 (2016); https://doi.org/10.1038/am.2016.97
Q. Zhang, Y.M. Sun, W. Xu and D.B. Zhu, Energy Environ. Sci., 5, 9639 (2012); https://doi.org/10.1039/c2ee23006b
L.M. Wang, Q. Yao, J.X. Xiao, K.Y. Zeng, W. Shi, S.Y. Qu and L. Chen, Chem. Asian J., 11, 1955 (2016); https://doi.org/10.1002/asia.201600493
Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun, H. Zeng, Z. Jin, X. Huang and L. Chen, J. Mater. Chem. A Mater. Energy Sustain., 2, 2634 (2014); https://doi.org/10.1039/C3TA14008C
H. Wang, L. Yin, X. Pu and C. Yu, Polymer, 54, 1136 (2013); https://doi.org/10.1016/j.polymer.2012.12.038
M.A. Kamarudin, S.R. Sahamir, R.S. Datta, B.D. Long, M.F. Mohd Sabri and S. Mohd Said, Scient. World J., 2013, 713640 (2013); https://doi.org/10.1155/2013/713640
Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu and D. Zhu, Adv. Mater., 24, 932 (2012); https://doi.org/10.1002/adma.201104305
R. Yue, S. Chen, C. Liu, B. Lu, J. Xu, J. Wang and G. Liu, J. Solid State Electrochem., 16, 117 (2012); https://doi.org/10.1007/s10008-011-1292-0
M. Lee, Y.G. Ko, J.B. Lee, W.H. Park, D. Cho and O.H. Kwon, Macromol. Res., 22, 746 (2014); https://doi.org/10.1007/s13233-014-2096-8
D.N. Rockwood, R.C. Preda, T. Yucel, X.Q. Wang, M.L. Lovett and D.L. Kaplan, Nat. Protoc., 6, 1612 (2011); https://doi.org/10.1038/nprot.2011.379
J. Perez-Rigueiro, C. Viney, J. Llorca and M. Elices, J. Appl. Polym. Sci., 75, 1270 (2000); https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1270:: AID-APP8>3.0.CO;2-C
G.Y. Liu, Q. Tang, Y.N. Yu, J. Li, J.W. Luo and M.Z. Li, Polym. Adv. Technol., 25, 1596 (2014); https://doi.org/10.1002/pat.3408
B.M. Min, L. Jeong, K.Y. Lee and W.H. Park, Macromol. Biosci., 6, 285 (2006); https://doi.org/10.1002/mabi.200500246
F. Zhang, B.Q. Zuo and L. Bai, J. Mater. Sci., 44, 5682 (2009); https://doi.org/10.1007/s10853-009-3800 5
S. Ling, D.L. Kaplan and M.J. Buehler, Nat. Rev. Mater., 3, 18016 (2018); https://doi.org/10.1038/natrevmats.2018.16
Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan and S. Ling, Adv. Funct. Mater., 28, 1805305 (2018); https://doi.org/10.1002/adfm.201805305
S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler and D.L. Kaplan, Prog. Polym. Sci., 85, 1 (2018); https://doi.org/10.1016/j.progpolymsci.2018.06.004
J.L. Yarger, B.R. Cherry and A. van der Vaart, Nat. Rev. Mater., 3, 18008 (2018); https://doi.org/10.1038/natrevmats.2018.8
R. Xiong, A.M. Grant, R. Ma, S. Zhang and V.V. Tsukruk, Mater. Sci. Eng., 125, 1 (2018); https://doi.org/10.1016/j.mser.2018.01.002
H.-J. Kim, J.-H. Kim, K.-W. Jun, J.-H. Kim, W.-C. Seung, O.H. Kwon, J.-Y. Park, S.-W. Kim and I.-K. Oh, Adv. Energy Mater., 6, 1502329 (2016); https://doi.org/10.1002/aenm.201502329
Y. Xue, S. Lofland and X. Hu, Polymers, 11, 456 (2019); https://doi.org/10.3390/polym11030456
X. Jin, J. Zhang, W. Gao, J. Li and X. Wang, Biointerphases, 9, 031013 (2014); https://doi.org/10.1116/1.4890982
J. Zhang, R. Rajkhowa, J. Li, X. Liu and X. Wang, Mater. Des., 49, 842 (2013); https://doi.org/10.1016/j.matdes.2013.02.006
S. Xu, Z. Xu, J. Starrett, C. Hayashi and X. Wang, Polymer, 55, 1845 (2014); https://doi.org/10.1016/j.polymer.2014.02.020
A. Delan, M. Rennau, S.E. Schulz and T. Gessner, Microelectron. Eng., 70, 280 (2003); https://doi.org/10.1016/S0167-9317(03)00417-9
J. Zhou, Z. Zhao, R. Hu, J. Yang, H. Xiao, Y. Liu and M. Lu, Mater. Des., 191, 108636 (2020); https://doi.org/10.1016/j.matdes.2020.108636
J.-T. Wang, L.-L. Li, M.-Y. Zhang, S.-L. Liu, L.-H. Jiang and Q. Shen, Mater. Sci. Eng. C, 34, 417 (2014); https://doi.org/10.1016/j.msec.2013.09.041
J.-T. Wang, L.-L. Li, L. Feng, J.-F. Li, L.-H. Jiang and Q. Shen, Int. J. Biol. Macromol., 63, 205 (2014); https://doi.org/10.1016/j.ijbiomac.2013.11.006
K.I. Lee, X. Wang, X. Guo, K.-F. Yung and B. Fei, Int. J. Biol. Macromol., 95, 826 (2017); https://doi.org/10.1016/j.ijbiomac.2016.11.090
B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi and I. Visoly-Fisher, Sci. Rep., 7, 45030 (2017); https://doi.org/10.1038/srep45030
S. Ambalagi, M. Devendrappa, S. Nagaraja and B. Sannakki, IOP Conf. Series Mater. Sci. Eng., 310, 012081 (2018); https://doi.org/10.1088/1757-899X/310/1/012081
Z. Ma, W. Wang and D. Yu, J. Mater. Sci., 55, 796 (2020); https://doi.org/10.1007/s10853-019-04035-0