This work is licensed under a Creative Commons Attribution 4.0 International License.
Tannic Acid Catalyzed Green Synthesis of Functionalized Chromeno-Pyrimidine-2,5-dione/thione Derivatives
Corresponding Author(s) : D. Parthiban
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
Diversely functionalized chromeno-pyrimidine-2,5-dione/thione compounds were synthesized by cyclocondensation of 4-hydroxy coumarin, aldehydes and urea/thiourea using tannic acid as a green catalyst and 1:1 (EtOH:H2O) as a green solvent. Different acids were screened for their catalytic activity of chromeno-pyrimidine-2,5-dione/thione derivatives. Tannic acid (10 mol%) was used as a suitable catalyst with increased catalytic activity. By utilizing this protocol, chromeno-pyrimidine scaffolds were prepared in acceptable to excellent yield without the use of conventional volatile organic solvent and toxic metal catalyst. To our best of knowledge, this is the first report, in which tannic acid is utilized successfully as an eco-safe catalyst for synthesis of fused pyrimidines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.P. Ellis and I.M. Lockhart, ed.: G.P. Ellis, The Chemistry of Hetero-cyclic Compounds: Chromenes, Chromanones and Chromones, Wiley-VCH: Weinheim, Germany, vol. 31 (2007).
- L. Alvey, S. Prado, V. Huteau, B. Saint-Joanis, S. Michel, M. Koch, S.T. Cole, F. Tillequin and Y.L. Janin, Bioorg. Med. Chem., 16, 8264 (2008); https://doi.org/10.1016/j.bmc.2008.06.057
- T. Symeonidis, M. Chamilos, J. Hadjipavlou-Litina, M. Kallitsakis and E. Litinas, Bioorg. Med. Chem. Lett., 19, 1139 (2009); https://doi.org/10.1016/j.bmcl.2008.12.098
- J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri and Z. Huang, Proc. Natl. Acad. Sci. USA, 97, 7124 (2000); https://doi.org/10.1073/pnas.97.13.7124
- J.F. Cheng, A. Ishikawa, Y. Ono, T. Arrhenius and A. Nadzan, Bioorg. Med. Chem. Lett., 13, 3647 (2003); https://doi.org/10.1016/j.bmcl.2003.08.025
- D. Gree, S. Vorin, L. Manthati, F. Caijo, G. Viault, F. Manero, P. Juin and R. Grée, Tetrahedron Lett., 49, 3276 (2008); https://doi.org/10.1016/j.tetlet.2008.03.070
- W. Kemnitzer, S. Jiang, H. Zhang, S. Kasibhatla, C. Crogan-Grundy, C. Blais, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe and S.X. Cai, Bioorg. Med. Chem. Lett., 18, 5571 (2008); https://doi.org/10.1016/j.bmcl.2008.09.011
- M.M. Khafagy, A.H.F. Abd El-Wahab, F.A. Eid and A.M. El-Agrody, Farmaco, 57, 715 (2002); https://doi.org/10.1016/S0014-827X(02)01263-6
- M. Kidwai, S. Saxena, M.K.R. Khan and S.S. Thukral, Eur. J. Med. Chem., 40, 816 (2005); https://doi.org/10.1016/j.ejmech.2005.02.009
- B. Sunil Kumar, N. Srinivasulu, R.H. Udupi, B. Rajitha, Y.T. Reddy, P. Narsimha Reddy and P.S. Kumar, Russ. J. Org. Chem., 42, 1813 (2006); https://doi.org/10.1134/S1070428006120098
- R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, Bioorg. Med. Chem. Lett., 17, 6459 (2007); https://doi.org/10.1016/j.bmcl.2007.09.095
- A.H. Bedair, N.A. El-Hady, M.S.A. El-Latif, A.H. Fakery and A.M. El-Agrody, Farmaco, 55, 708 (2000); https://doi.org/10.1016/S0014-827X(00)00097-5
- M.M. Heravi, K. Bakhtiari, V. Zadsirjan, F. Bamoharram and O.M. Heravi, Bioorg. Med. Chem. Lett., 17, 4262 (2007); https://doi.org/10.1016/j.bmcl.2007.05.023
- C. Bruhlmann, F. Ooms, P. Carrupt, B. Testa, M. Catto, F. Leonetti, C. Altomare and A. Carotti, J. Med. Chem., 44, 3195 (2001); https://doi.org/10.1021/jm010894d
- S.R. Kesten, T.G. Heffner, S.J. Johnson, T.A. Pugsley, J.L. Wright and L.D. Wise, J. Med. Chem., 42, 3718 (1999); https://doi.org/10.1021/jm990266k
- O. Prakash, K. Hussain, R. Kumar, D. Wadhwa, C. Sharma and K.R. Aneja, Org. Med. Chem. Lett., 1, 5 (2011); https://doi.org/10.1186/2191-2858-1-5
- J. Kempson, W.J. Pitts, J. Barbosa, J. Guo, O. Omotoso, A. Watson, K. Stebbins, G.C. Starling, J.H. Dodd, J.C. Barrish, R. Felix and K. Fischer, Bioorg. Med. Chem. Lett., 15, 1829 (2005); https://doi.org/10.1016/j.bmcl.2005.02.025
- O. Bruno, C. Brullo, S. Schenone, F. Bondavalli, A. Ranise, M. Tognolini, M. Impicciatore, V. Ballabeni and E. Barocelli, Bioorg. Med. Chem., 14, 121 (2006); https://doi.org/10.1016/j.bmc.2005.07.066
- A.V. Ivachtchenko, E.S. Golovina, M.G. Kadieva, A.G. Koryakova, S.M. Kovalenko, O.D. Mitkin, I.M. Ravnyeyko, S.E. Tkachenko, I.M. Okun and O.V. Zaremba, Bioorg. Med. Chem., 18, 5282 (2010); https://doi.org/10.1016/j.bmc.2010.05.051
- S.A. Said, A.E.-G. Amr, N.M. Sabry and M.M. Abdalla, Eur. J. Med. Chem., 44, 4787 (2009); https://doi.org/10.1016/j.ejmech.2009.07.013
- J.D. Brown, eds.: A.R. Katrizky and C.W. Rees, Comprehensive Hetero-cyclic Chemistry, Pergamon: Oxford, vol. 3, p. 57 (1984).
- K.N. Mohana, B.N. Prasanna Kumar and L. Mallesha, Drug Invention Today, 5, 216 (2013);https://doi.org/10.1016/j.dit.2013.08.004
- C. Heidelberger, eds.: J.F. Holland and E. Frei, Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicine, Lea and Febiger: Philadelphia, p. 801 (1984).
- 24 M.S. Kaurav, P.K. Sahu, P.K. Sahu, M. Messali, S.M. Almutairi, P.L. Sahu and D.D. Agarwal, RSC Adv., 9, 3755 (2019); https://doi.org/10.1039/C8RA07517D
- Y. Liu, S. Liu, Y. Shi, M. Qin, Z. Sun and G. Liu, Xenobiotica, 48, 818 (2018); https://doi.org/10.1080/00498254.2017.1361051
- S.S. Rathore, S.K. Agarwal, S. Pande, S.K. Singh, T. Mittal and B. Mittal, PLoS One, 7, e37844 (2012); https://doi.org/10.1371/journal.pone.0037844
- J.H. Prochaska, S. Göbel, K. Keller, M. Coldewey, A. Ullmann, H. Lamparter, C. Jünger, Z. Al-Bayati, C. Baer, U. Walter, C. Bickel, H. ten Cate, T. Münzel and P.S. Wild, BMC Med., 13, 14 (2015); https://doi.org/10.1186/s12916-015-0268-9
- V. Rodriguez-Cerrato, G. Del Prado, L. Huelves, P. Naves, V. Ruiz, E. Garcia, C. Ponte and F. Soriano, Int. J. Antimicrob. Agents, 35, 544 (2010); https://doi.org/10.1016/j.ijantimicag.2010.02.007
- C. Hou, Y. Wang, H. Zhu and H. Wei, J. Taiwan Inst. Chem. Eng., 60, 438 (2016);https://doi.org/10.1016/j.jtice.2015.11.005
- A. Sandhar, D.N. Prasad and R.K. Singh, Asian J. Chem., 24, 5643 (2012).
- R.K. Singh and R. Duvedi, Arab. J. Chem., 11, 91 (2018); https://doi.org/10.1016/j.arabjc.2014.08.022
- J. Zhang, D. Ren, Y. Ma, W. Wang and H. Wu, Tetrahedron, 70, 5274 (2014); https://doi.org/10.1016/j.tet.2014.05.059
- C. Capello, U. Fischer and K. Hungerbuhler, Green Chem., 9, 927 (2007); https://doi.org/10.1039/b617536h
- J.C. Isenburg, N.V. Karamchandani, D.T. Simionescu and N.R. Vyavahare, Biomaterials, 27, 3645 (2006);https://doi.org/10.1016/j.biomaterials.2006.02.016
References
G.P. Ellis and I.M. Lockhart, ed.: G.P. Ellis, The Chemistry of Hetero-cyclic Compounds: Chromenes, Chromanones and Chromones, Wiley-VCH: Weinheim, Germany, vol. 31 (2007).
L. Alvey, S. Prado, V. Huteau, B. Saint-Joanis, S. Michel, M. Koch, S.T. Cole, F. Tillequin and Y.L. Janin, Bioorg. Med. Chem., 16, 8264 (2008); https://doi.org/10.1016/j.bmc.2008.06.057
T. Symeonidis, M. Chamilos, J. Hadjipavlou-Litina, M. Kallitsakis and E. Litinas, Bioorg. Med. Chem. Lett., 19, 1139 (2009); https://doi.org/10.1016/j.bmcl.2008.12.098
J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri and Z. Huang, Proc. Natl. Acad. Sci. USA, 97, 7124 (2000); https://doi.org/10.1073/pnas.97.13.7124
J.F. Cheng, A. Ishikawa, Y. Ono, T. Arrhenius and A. Nadzan, Bioorg. Med. Chem. Lett., 13, 3647 (2003); https://doi.org/10.1016/j.bmcl.2003.08.025
D. Gree, S. Vorin, L. Manthati, F. Caijo, G. Viault, F. Manero, P. Juin and R. Grée, Tetrahedron Lett., 49, 3276 (2008); https://doi.org/10.1016/j.tetlet.2008.03.070
W. Kemnitzer, S. Jiang, H. Zhang, S. Kasibhatla, C. Crogan-Grundy, C. Blais, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe and S.X. Cai, Bioorg. Med. Chem. Lett., 18, 5571 (2008); https://doi.org/10.1016/j.bmcl.2008.09.011
M.M. Khafagy, A.H.F. Abd El-Wahab, F.A. Eid and A.M. El-Agrody, Farmaco, 57, 715 (2002); https://doi.org/10.1016/S0014-827X(02)01263-6
M. Kidwai, S. Saxena, M.K.R. Khan and S.S. Thukral, Eur. J. Med. Chem., 40, 816 (2005); https://doi.org/10.1016/j.ejmech.2005.02.009
B. Sunil Kumar, N. Srinivasulu, R.H. Udupi, B. Rajitha, Y.T. Reddy, P. Narsimha Reddy and P.S. Kumar, Russ. J. Org. Chem., 42, 1813 (2006); https://doi.org/10.1134/S1070428006120098
R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, Bioorg. Med. Chem. Lett., 17, 6459 (2007); https://doi.org/10.1016/j.bmcl.2007.09.095
A.H. Bedair, N.A. El-Hady, M.S.A. El-Latif, A.H. Fakery and A.M. El-Agrody, Farmaco, 55, 708 (2000); https://doi.org/10.1016/S0014-827X(00)00097-5
M.M. Heravi, K. Bakhtiari, V. Zadsirjan, F. Bamoharram and O.M. Heravi, Bioorg. Med. Chem. Lett., 17, 4262 (2007); https://doi.org/10.1016/j.bmcl.2007.05.023
C. Bruhlmann, F. Ooms, P. Carrupt, B. Testa, M. Catto, F. Leonetti, C. Altomare and A. Carotti, J. Med. Chem., 44, 3195 (2001); https://doi.org/10.1021/jm010894d
S.R. Kesten, T.G. Heffner, S.J. Johnson, T.A. Pugsley, J.L. Wright and L.D. Wise, J. Med. Chem., 42, 3718 (1999); https://doi.org/10.1021/jm990266k
O. Prakash, K. Hussain, R. Kumar, D. Wadhwa, C. Sharma and K.R. Aneja, Org. Med. Chem. Lett., 1, 5 (2011); https://doi.org/10.1186/2191-2858-1-5
J. Kempson, W.J. Pitts, J. Barbosa, J. Guo, O. Omotoso, A. Watson, K. Stebbins, G.C. Starling, J.H. Dodd, J.C. Barrish, R. Felix and K. Fischer, Bioorg. Med. Chem. Lett., 15, 1829 (2005); https://doi.org/10.1016/j.bmcl.2005.02.025
O. Bruno, C. Brullo, S. Schenone, F. Bondavalli, A. Ranise, M. Tognolini, M. Impicciatore, V. Ballabeni and E. Barocelli, Bioorg. Med. Chem., 14, 121 (2006); https://doi.org/10.1016/j.bmc.2005.07.066
A.V. Ivachtchenko, E.S. Golovina, M.G. Kadieva, A.G. Koryakova, S.M. Kovalenko, O.D. Mitkin, I.M. Ravnyeyko, S.E. Tkachenko, I.M. Okun and O.V. Zaremba, Bioorg. Med. Chem., 18, 5282 (2010); https://doi.org/10.1016/j.bmc.2010.05.051
S.A. Said, A.E.-G. Amr, N.M. Sabry and M.M. Abdalla, Eur. J. Med. Chem., 44, 4787 (2009); https://doi.org/10.1016/j.ejmech.2009.07.013
J.D. Brown, eds.: A.R. Katrizky and C.W. Rees, Comprehensive Hetero-cyclic Chemistry, Pergamon: Oxford, vol. 3, p. 57 (1984).
K.N. Mohana, B.N. Prasanna Kumar and L. Mallesha, Drug Invention Today, 5, 216 (2013);https://doi.org/10.1016/j.dit.2013.08.004
C. Heidelberger, eds.: J.F. Holland and E. Frei, Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicine, Lea and Febiger: Philadelphia, p. 801 (1984).
24 M.S. Kaurav, P.K. Sahu, P.K. Sahu, M. Messali, S.M. Almutairi, P.L. Sahu and D.D. Agarwal, RSC Adv., 9, 3755 (2019); https://doi.org/10.1039/C8RA07517D
Y. Liu, S. Liu, Y. Shi, M. Qin, Z. Sun and G. Liu, Xenobiotica, 48, 818 (2018); https://doi.org/10.1080/00498254.2017.1361051
S.S. Rathore, S.K. Agarwal, S. Pande, S.K. Singh, T. Mittal and B. Mittal, PLoS One, 7, e37844 (2012); https://doi.org/10.1371/journal.pone.0037844
J.H. Prochaska, S. Göbel, K. Keller, M. Coldewey, A. Ullmann, H. Lamparter, C. Jünger, Z. Al-Bayati, C. Baer, U. Walter, C. Bickel, H. ten Cate, T. Münzel and P.S. Wild, BMC Med., 13, 14 (2015); https://doi.org/10.1186/s12916-015-0268-9
V. Rodriguez-Cerrato, G. Del Prado, L. Huelves, P. Naves, V. Ruiz, E. Garcia, C. Ponte and F. Soriano, Int. J. Antimicrob. Agents, 35, 544 (2010); https://doi.org/10.1016/j.ijantimicag.2010.02.007
C. Hou, Y. Wang, H. Zhu and H. Wei, J. Taiwan Inst. Chem. Eng., 60, 438 (2016);https://doi.org/10.1016/j.jtice.2015.11.005
A. Sandhar, D.N. Prasad and R.K. Singh, Asian J. Chem., 24, 5643 (2012).
R.K. Singh and R. Duvedi, Arab. J. Chem., 11, 91 (2018); https://doi.org/10.1016/j.arabjc.2014.08.022
J. Zhang, D. Ren, Y. Ma, W. Wang and H. Wu, Tetrahedron, 70, 5274 (2014); https://doi.org/10.1016/j.tet.2014.05.059
C. Capello, U. Fischer and K. Hungerbuhler, Green Chem., 9, 927 (2007); https://doi.org/10.1039/b617536h
J.C. Isenburg, N.V. Karamchandani, D.T. Simionescu and N.R. Vyavahare, Biomaterials, 27, 3645 (2006);https://doi.org/10.1016/j.biomaterials.2006.02.016