Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Irradiated Eco-friendly Synthesis of Pyrimidine Derivatives as Potential Antitubercular Agents
Corresponding Author(s) : Krishna Chandra Panda
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
The microwave irradiation method is applied for the efficient synthesis of pyrimidine derivatives. The synthetic protocol involves Knoevenagel condensation followed by Michael addition reaction and cyclization of equimolar quantities of aromatic aldehydes, ethyl cyanoacetate and guanidine in the presence of ethanolic NaOH solution to produce corresponding pyrimidine derivatives. The reaction mixture was allowed to reflux under microwave radiation at power level-2 for 7-12 min. The microwave heating technique offers a cleaner reaction with a shorter reaction time and improved product yield as compared to conventional synthesis. The newly synthesized compounds were characterized by their FT-IR, 1H NMR and LC-MS spectral data. All the synthesized pyrimidine derivatives were evaluated in vitro for their antitubercular activity in vitro by using the luciferase reporter phage (LRP) assay method. The antimycobacterial activity was determined in terms of the percent reduction in the relative light unit (RLU). The test compounds exhibited promising antitubercular activity against Mycobacterium tuberculosis H37Rv and clinical isolates, S, H, R and E resistant M. tuberculosis in comparison with the standard drug (isoniazid).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- A.K. Dhingra, B. Chopra, J.S. Dua and D.N. Prasad, Antiinflamm. Antiallergy Agents Med. Chem., 16, 136 (2017); https://doi.org/10.2174/1871523017666180126150901
- M.M. Heravi and V. Zadsirjan, RSC Adv., 10, 44247 (2020); https://doi.org/10.1039/D0RA09198G
- P.J. Jainey and K.I. Bhat, Indian J. Heterocycl. Chem., 20, 309 (2011).
- M.C. Sanu, J. Joseph, D. Chacko, B. Vinod and P.A. Daisy, Int. J. Pharm. Sci. Rev. Res., 69, 64 (2021); https://doi.org/10.47583/ijpsrr.2021.v69i02.010
- A. De, S. Sarkar and A. Majee, Chem. Heterocycl. Comp., 57, 410 (2021); https://doi.org/10.1007/s10593-021-02917-3
- A.L. Alanzy, D.A. Bakhotm and R.M. Abdel-Rahman, Int. J. Org. Chem., 10, 39 (2020); https://doi.org/10.4236/ijoc.2020.102003
- S. Kumar and B. Narasimhan, Chem. Central J., 12, 38 (2018); https://doi.org/10.1186/s13065-018 0406-5
- T.P. Selvam, C.R. James, P.V. Dniandev and S.K. Valzita, Res. Pharm., 2, 1 (2012).
- I.M. Lagoja, Chem. Biodivers., 2, 1 (2005); https://doi.org/10.1002/cbdv.200490173
- J. Zhuang and S. Ma, ChemMedChem, 15, 1875 (2020); https://doi.org/10.1002/cmdc.202000378
- J. Morgan, R. Haritakul and P.A. Keller, Bioorg. Med. Chem. Lett., 13, 1755 (2003); https://doi.org/10.1016/S0960-894X(03)00241-5
- C.J. Queval, R. Brosch and R. Simeone, Front. Microbiol., 8, 2284 (2017); https://doi.org/10.3389/fmicb.2017.02284
- V.J. Faldu, V.K. Gothalia and V.H. Shah, Indian J. Chem., 54B, 391 (2015).
- M. Kidwai, K. Singhal and S. Kukreja, Z. Naturforsch. B, 62, 732 (2007); https://doi.org/10.1515/znb-2007-0518
- A.K. Mahato, B.M. Sahoo, B.K. Banik and B.C. Mohanta, J. Indian Chem. Soc., 95, 1327 (2018).
- B.M. Sahoo, B.V.V. Ravi Kumar, J. Panda and S.C. Dinda, J. Nanopart., 2013, 780786 (2013); https://doi.org/10.1155/2013/780786
- C.O. Kappe, Angew. Chem. Int. Ed., 43, 6250 (2004); https://doi.org/10.1002/anie.200400655
- M. De Rosa, J. Gising, L.R. Odell and M. Larhed, Ups. J. Med. Sci., 119, 181 (2014); https://doi.org/10.3109/03009734.2014.899655
- M. Gaba and N. Dhingra, Indian J. Pharm. Educ. Res., 45, 175 (2011).
- R. Gedye, R. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J. Rousell, Tetrahedron Lett., 27, 279 (1986); https://doi.org/10.1016/S0040-4039(00)83996-9
- A. Rattan, A. Kalia and N. Ahmad, Emerg. Infect. Dis., 4, 195 (1998); https://doi.org/10.3201/eid0402.980207
- S. Anbarasu, K. Revathy, M. Radhakrishnan, P. Krupakar, J. Joseph and V. Kuma, Biosci. Biotechnol. Res. Commun., 13, 1236 (2020); https://doi.org/10.21786/bbrc/13.3/39
- N. Banaiee, M. Bobadilla-del-Valle, S. Bardarov Jr., P.F. Riska, P.M. Small, A. Ponce-de-Leon, W.R. Jacobs Jr., G.F. Hatfull and J. Sifuentes-Osornio, J. Clin. Microbiol., 39, 3883 (2001); https://doi.org/10.1128/JCM.39.11.3883-3888.2001
- Y. Pore, B. Kuchekar, M. Bhatia and K. Ingale, Dig. J. Nanomater. Biostruct., 4, 373 (2009).
References
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
A.K. Dhingra, B. Chopra, J.S. Dua and D.N. Prasad, Antiinflamm. Antiallergy Agents Med. Chem., 16, 136 (2017); https://doi.org/10.2174/1871523017666180126150901
M.M. Heravi and V. Zadsirjan, RSC Adv., 10, 44247 (2020); https://doi.org/10.1039/D0RA09198G
P.J. Jainey and K.I. Bhat, Indian J. Heterocycl. Chem., 20, 309 (2011).
M.C. Sanu, J. Joseph, D. Chacko, B. Vinod and P.A. Daisy, Int. J. Pharm. Sci. Rev. Res., 69, 64 (2021); https://doi.org/10.47583/ijpsrr.2021.v69i02.010
A. De, S. Sarkar and A. Majee, Chem. Heterocycl. Comp., 57, 410 (2021); https://doi.org/10.1007/s10593-021-02917-3
A.L. Alanzy, D.A. Bakhotm and R.M. Abdel-Rahman, Int. J. Org. Chem., 10, 39 (2020); https://doi.org/10.4236/ijoc.2020.102003
S. Kumar and B. Narasimhan, Chem. Central J., 12, 38 (2018); https://doi.org/10.1186/s13065-018 0406-5
T.P. Selvam, C.R. James, P.V. Dniandev and S.K. Valzita, Res. Pharm., 2, 1 (2012).
I.M. Lagoja, Chem. Biodivers., 2, 1 (2005); https://doi.org/10.1002/cbdv.200490173
J. Zhuang and S. Ma, ChemMedChem, 15, 1875 (2020); https://doi.org/10.1002/cmdc.202000378
J. Morgan, R. Haritakul and P.A. Keller, Bioorg. Med. Chem. Lett., 13, 1755 (2003); https://doi.org/10.1016/S0960-894X(03)00241-5
C.J. Queval, R. Brosch and R. Simeone, Front. Microbiol., 8, 2284 (2017); https://doi.org/10.3389/fmicb.2017.02284
V.J. Faldu, V.K. Gothalia and V.H. Shah, Indian J. Chem., 54B, 391 (2015).
M. Kidwai, K. Singhal and S. Kukreja, Z. Naturforsch. B, 62, 732 (2007); https://doi.org/10.1515/znb-2007-0518
A.K. Mahato, B.M. Sahoo, B.K. Banik and B.C. Mohanta, J. Indian Chem. Soc., 95, 1327 (2018).
B.M. Sahoo, B.V.V. Ravi Kumar, J. Panda and S.C. Dinda, J. Nanopart., 2013, 780786 (2013); https://doi.org/10.1155/2013/780786
C.O. Kappe, Angew. Chem. Int. Ed., 43, 6250 (2004); https://doi.org/10.1002/anie.200400655
M. De Rosa, J. Gising, L.R. Odell and M. Larhed, Ups. J. Med. Sci., 119, 181 (2014); https://doi.org/10.3109/03009734.2014.899655
M. Gaba and N. Dhingra, Indian J. Pharm. Educ. Res., 45, 175 (2011).
R. Gedye, R. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J. Rousell, Tetrahedron Lett., 27, 279 (1986); https://doi.org/10.1016/S0040-4039(00)83996-9
A. Rattan, A. Kalia and N. Ahmad, Emerg. Infect. Dis., 4, 195 (1998); https://doi.org/10.3201/eid0402.980207
S. Anbarasu, K. Revathy, M. Radhakrishnan, P. Krupakar, J. Joseph and V. Kuma, Biosci. Biotechnol. Res. Commun., 13, 1236 (2020); https://doi.org/10.21786/bbrc/13.3/39
N. Banaiee, M. Bobadilla-del-Valle, S. Bardarov Jr., P.F. Riska, P.M. Small, A. Ponce-de-Leon, W.R. Jacobs Jr., G.F. Hatfull and J. Sifuentes-Osornio, J. Clin. Microbiol., 39, 3883 (2001); https://doi.org/10.1128/JCM.39.11.3883-3888.2001
Y. Pore, B. Kuchekar, M. Bhatia and K. Ingale, Dig. J. Nanomater. Biostruct., 4, 373 (2009).