Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Applications of Nanomaterials for Adsorptive and Catalytic Removal of Chemical Pesticides: An Overview
Corresponding Author(s) : K. Sahithya
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Chemical pesticides are one of the most frequently encountered pollutants in multiple water sources and made their way into biomagnification. Short-term exposure to pesticides causes headache, vomiting, nausea, blurred vision, pupil constriction, muscle tremors, excessive sweating, etc. whereas prolonged exposure can lead to severe neurological problems, coma and even death. However, conventional methods have been proved to be inefficient in complete removal of pesticides. Over the past few years, nanotechnology is considered to play a significant role in influencing the current environmental engineering and science owing to their excellent physico-chemical properties and tuneable functionalities. Nanomaterials are massively enrolled as adsorbents and photocatalysts for the removal of various chemical pesticides from different sources. In present article, the applicability of different nanomaterials for the removal of various pesticides via adsorption and photocatalytic degradation from aqueous environment was discussed. Furthermore, the influence of surface treatment to their functionalities and efficiencies was reviewed and highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.A. El-Said, M.E. El-Khouly, M.H. Ali, R.T. Rashad, E.A. Elshehy and A.S. Al-Bogami, J. Environ. Chem. Eng., 6, 2214 (2018); https://doi.org/10.1016/j.jece.2018.03.027
- P.V.L. Reddy and K.-H. Kim, J. Hazard. Mater., 285, 325 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.036
- E.A.A. Elhussein, S. Sahin and S.S. Bayazit, J. Mol. Liq., 255, 10 (2018); https://doi.org/10.1016/j.molliq.2018.01.165
- M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal and V.K. Gupta, Microchem. J., 145, 486 (2019); https://doi.org/10.1016/j.microc.2018.10.053
- M.H. Dehghani, Z.S. Niasar, M.R. Mehrnia, M. Shayeghi, M.A. Al-Ghouti, B. Heibati, G. McKay and K. Yetilmezsoy, Chem. Eng. J., 310, 22 (2017); https://doi.org/10.1016/j.cej.2016.10.057
- A. Derbalah, A. Ismail and S. Shaheen, Pol. J. Chem. Technol., 15, 25 (2013); https://doi.org/10.2478/pjct-2013-0040
- A.A. Khan and T. Akhtar, Desalination, 272, 259 (2011); https://doi.org/10.1016/j.desal.2011.01.033
- Q. Yang, J. Wang, W. Zhang, F. Liu, X. Yue, Y. Liu, M. Yang, Z. Li and J. Wang, Chem. Eng. J., 313, 19 (2017); https://doi.org/10.1016/j.cej.2016.12.041
- P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis and L. Hens, Front. Public Health, 4, 148 (2016); https://doi.org/10.3389/fpubh.2016.00148
- J.Y. Liao, C. Fan, Y.Z. Huang and K.J. Pei, J. Hazard. Mater., 389, 121871 (2020); https://doi.org/10.1016/j.jhazmat.2019.121871
- F. López-Osorio and Y. Wurm, Trends Ecol. Evol., 35, 380 (2020); https://doi.org/10.1016/j.tree.2019.12.012
- https://www.newscientist.com/article/2216318-decline-of-migrating-birds-could-be-partly-due-to pesticides/.
- M. Rani and U. Shanker, J. Environ. Chem. Eng., 6, 1512 (2018); https://doi.org/10.1016/j.jece.2018.01.060
- S. Kalidhasan, I. Dror and B. Berkowitz, Sci. Rep-UK, 7, 1415 (2017); https://doi.org/10.1038/s41598-017-01429-5
- E. Vázquez-Núñez, C.E. Molina-Guerrero, J.M. Peña-Castro, F. Fernández-Luqueño and M.G. de la Rosa-Álvarez, Process, 8, 826 (2020); https://doi.org/10.3390/pr8070826
- M.A. Nascimento, R.P. Lopes, J.C. Cruz, A.A. Silva and C.F. Lima, Environ. Pollut., 211, 406 (2016); https://doi.org/10.1016/j.envpol.2015.12.043
- F.D. Guerra, M.F. Attia, D.C. Whitehead and F. Alexis, Molecules, 23, 1760 (2018); https://doi.org/10.3390/molecules23071760
- L.A. Paramo, A.A. Feregrino-Pérez, R. Guevara, S. Mendoza and K. Esquivel, Nanomaterials, 10, 1654 (2020); https://doi.org/10.3390/nano10091654
- T.T. Firozjaee, N. Mehrdadi, M. Baghdadi and G.R.N. Bidhendi, Int. J. Nanosci. Nanotechnol., 14, 43 (2018).
- A. Behera, B. Mittu, S. Padhi, N. Patra and J. Singh, Eds.: ed. K.A.A. Elsalam, Bimetallic Nanoparticles: Green Synthesis, Applications and Future Perspectives, Chap. 25, Elsevier (2020).
- C. Fan, Y.L. Liang, H. Dong, G. Ding, W. Zhang, G. Tang, J. Yang, D. Kong, D. Wang and Y. Cao, Anal. Chim. Acta, 975, 20 (2017); https://doi.org/10.1016/j.aca.2017.04.036
- T. Kaur, A. Sraw, R.K. Wanchoo and A.P. Toor, Mater. Today Proc., 3, 354 (2016); https://doi.org/10.1016/j.matpr.2016.01.020
- G. Roselló-Márquez, R.M. Fernández-Domene, R. Sánchez-Tovar, S. García-Carrión, B. Lucas-Granados and J. García-Antón, Sci. Total Environ., 674, 88 (2019); https://doi.org/10.1016/j.scitotenv.2019.04.150
- A.K. Sharma, R.K. Tiwari and M.S. Gaur, Arab. J. Chem., 9, S1755 (2016); https://doi.org/10.1016/j.arabjc.2012.04.044
- J. Burbano, I. Cruz, J. Colina-Marquez, A. López-Vásquez and F. Machuca, J. Adv. Oxid. Technol., 11, 49 (2008); https://doi.org/10.1515/jaots-2008-0106
- T.M.S. Rosbero and D.H. Camacho, J. Environ. Chem. Eng., 5, 2524 (2017); https://doi.org/10.1016/j.jece.2017.05.009
- A. Iqbal, A. Haq, G.A. Cerron-Calle, S.A.R. Naqvi, P. Westerhoff and S. Garcia-Segura, Catalysts, 11, 806 (2021); https://doi.org/10.3390/catal11070806
- A.M. Ismael, A.N. El-Shazly, S.E. Gaber, M.M. Rashad, A.H. Kamel and S.S.M. Hassan, RSC Adv., 10, 34806 (2020); https://doi.org/10.1039/D0RA02874F
- A. Singhal and M.L. Lind, Int. J. Nanomedicine, 13, 25 (2018); https://doi.org/10.2147/IJN.S124700
- T. Momic, T.L. Pašti, U. Bogdanovic, V. Vodnik, A. Mrakovic, Z. Rakoèevic, V.B. Pavlovic and V. Vasic, J. Nanomater., 2016, 8910271 (2016); https://doi.org/10.1155/2016/8910271
- G. Manimegalai, S. Shanthakumar and C. Sharma, Int. Nano Lett., 4, 105 (2014); https://doi.org/10.1007/s40089-014-0105-8
- S. Abbas, S. Nasreen, A. Haroon and M.A. Ashraf, Saudi J. Biol. Sci., 27, 1016 (2020); https://doi.org/10.1016/j.sjbs.2020.02.011
- M. Jesús Lerma-García, E.F. Simó-Alfonso, M. Zougagh and Á. Ríos, Talanta, 105, 372 (2013); https://doi.org/10.1016/j.talanta.2012.10.056
- M. Zubair, M. Daud, G. McKay, F. Shehzad and M.A. Al-Harthi, Appl. Clay Sci., 143, 279 (2017); https://doi.org/10.1016/j.clay.2017.04.002
- R. Otero, J.M. Fernández, M.A. Gonzalez, I. Pavlovic and M.A. Ulibarri, Chem. Eng. J., 221, 214 (2013); https://doi.org/10.1016/j.cej.2013.02.007
- R. Otero, J.M. Fernández, M.A. Ulibarri, R. Celis and F. Bruna, Appl. Clay Sci., 65-66, 72 (2012); https://doi.org/10.1016/j.clay.2012.04.022
- F. Bruna, I. Pavlovic, C. Barriga, J. Cornejo and M.A. Ulibarri, Appl. Clay Sci., 33, 116 (2006); https://doi.org/10.1016/j.clay.2006.04.004
- F. Li, Y. Wang, Q. Yang, D.G. Evans, C. Forano and X. Duan, J. Hazard. Mater., 125, 89 (2005); https://doi.org/10.1016/j.jhazmat.2005.04.037
- I. Pavlovic, C. Barriga, M.C. Hermosin, J. Cornejo and M.A. Ulibarri, Appl. Clay Sci., 30, 125 (2005); https://doi.org/10.1016/j.clay.2005.04.004
- K. Sahithya, D. Das and N. Das, Environ. Prog. Sustain. Energy, 36, 180 (2017); https://doi.org/10.1002/ep.12494
- H. Tavakkoli and M. Yazdanbakhsh, Micropor. Mesopor. Mater., 176, 86 (2013); https://doi.org/10.1016/j.micromeso.2013.03.043
- D. Koushik, S. Sen Gupta, S.M. Maliyekkal and T. Pradeep, J. Hazard. Mater., 308, 192 (2016); https://doi.org/10.1016/j.jhazmat.2016.01.004
- M. Guo, X. Weng, T. Wang and Z. Chen, Sep. Purif. Technol., 175, 222 (2017); https://doi.org/10.1016/j.seppur.2016.11.042
- L. Jing, C. Yang and Z. Zongshan, J. Wuhan Univ. Technol. Mater. Sci. Ed., 29, 168 (2013).
- I. San Román, M.L. Alonso, L. Bartolomé, A. Galdames, E. Goiti, M. Ocejo, M. Moragues, R.M. Alonso and J.L. Vilas, Chemosphere, 93, 1324 (2013); https://doi.org/10.1016/j.chemosphere.2013.07.050
- S.H. Khan and B. Pathak, Environ. Nonotech. Monit. Manag., 13, 100290 (2020); https://doi.org/10.1016/j.enmm.2020.100290
- S.H. Khan, B. Pathak and M.H. Fulekar, Front. Nanosci. Nanotech., 1, 23 (2015); https://doi.org/10.15761/FNN.1000105
- S.S. Essa, E.M. El-Saied, O.S. El-Tawil, I.M. Gamal and S.S. Abd El-Rahman, Vet. World, 12, 440 (2019); https://doi.org/10.14202/vetworld.2019.440-448
- Y. Kaur, Y. Bhatia, S. Chaudhary and G.R. Chaudhary, J. Mol. Liq., 234, 94 (2017); https://doi.org/10.1016/j.molliq.2017.03.069
- D.Z. Husein, R. Hassanien and M.F. Al-Hakkani, Heliyon, 5, e02339 (2019); https://doi.org/10.1016/j.heliyon.2019.e02339
- D. Mitra and L. Varshney, IOSR J. Environ. Sci. Toxicol. Food Technol., 7, 8 (2013); https://doi.org/10.9790/2402-0720811
- K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla and V.G. Gandhi, Water-Energy Nexus, 3, 46 (2020); https://doi.org/10.1016/j.wen.2020.03.008
- A. Amalraj and A. Pius, J. Water Process Eng., 7, 94 (2015); https://doi.org/10.1016/j.jwpe.2015.06.002
- S. Liu, L. Xie, J. Zheng, R. Jiang, F. Zhu, T. Luan and G. Ouyang, Anal. Chim. Acta, 878, 109 (2015); https://doi.org/10.1016/j.aca.2015.03.054
- A.B. Lavand and Y.S. Malghe, J. Saudi Chem. Soc., 19, 471 (2015); https://doi.org/10.1016/j.jscs.2015.07.001
- K. Gandhi, C. Vasudeva, V. Singh and M. Umekar, Clean Eng. Technol., 4, 100163 (2021); https://doi.org/10.1016/j.clet.2021.100163
- D.M. Fouad and M.B. Mohammed, J. Nanomater., 2012, 524123 (2012); https://doi.org/10.1155/2012/524123
- S.S. Gupta, I. Chakraborty, S.M. Maliyekkal, T.A. Mark, D.K. Pandey, S.K. Das and T. Pradeep, ACS Sustain. Chem.& Eng., 3, 1155 (2015); https://doi.org/10.1021/acssuschemeng.5b00080
- M. Khoshnood and S. Azizian, J. Ind. Eng. Chem., 18, 1796 (2012); https://doi.org/10.1016/j.jiec.2012.04.007
- S. Agarwal, N. Sadeghi, I. Tyagi, V.K. Gupta and A. Fakhri, J. Colloid Interface Sci., 478, 430 (2016); https://doi.org/10.1016/j.jcis.2016.06.029
- I. Ali, O.M.L. Alharbi, Z.A. ALOthman, A.M. Al-Mohaimeed and A. Alwarthan, Environ. Res., 170, 389 (2019); https://doi.org/10.1016/j.envres.2018.12.066
- G. Cavallaro, G. Lazzara, E. Rozhina, S. Konnova, M. Kryuchkova, N. Khaertdinov and R. Fakhrullin, RSC Adv., 9, 40553 (2019); https://doi.org/10.1039/C9RA08230A
- A. Ouali, L.S. Belaroui, A. Bengueddach, A.L. Galindo and A. Peña, Appl. Clay Sci., 115, 67 (2015); https://doi.org/10.1016/j.clay.2015.07.026
- M. Calabi Floody, B.K.G. Theng, P. Reyes and M.L. Mora, Clay Miner., 44, 161 (2009); https://doi.org/10.1180/claymin.2009.044.2.161
- B. Biswas, L.N. Warr, E.F. Hilder, N. Goswami, M.M. Rahman, J.G. Churchman, K. Vasilev, G. Pan and R. Naidu, Chem. Soc. Rev., 48, 3740 (2019); https://doi.org/10.1039/C8CS01019F
- H. Guan and Y. Zhao, Clay Nanoparticles, 203-224 (2020); https://doi.org/10.1016/B978-0-12-816783-0.00009-8
- B.N. Vasiljevic, M. Obradovic, D. Bajuk-Bogdanovic, M. Milojevic-Rakic, Z. Jovanovic, N. Gavrilov and I. Holclajtner-Antunovic, J. Environ. Sci., 81, 136 (2019); https://doi.org/10.1016/j.jes.2019.01.018
- T. Tsoufis, F. Katsaros, B.J. Kooi, S. Papageorgiou, Y. Deligiannakis, E. Bletsa and I. Panagiotopoulos, Chem. Eng. J., 313, 466 (2017); https://doi.org/10.1016/j.cej.2016.12.056
- D. Bielska, A. Karewicz, T. Lachowicz, K. Berent, K. Szczubialka and M. Nowakowska, Chem. Eng. J., 262, 125 (2015); https://doi.org/10.1016/j.cej.2014.09.081
- S.F.A. Shattar, N.A. Zakaria and K.Y. Foo, J. Mater. Res. Technol., 8, 4713 (2019); https://doi.org/10.1016/j.jmrt.2019.08.017
- E. Bojemueller, A. Nennemann and G. Lagaly, Appl. Clay Sci., 18, 277 (2001); https://doi.org/10.1016/S0169-1317(01)00027-8
- M.J. Sanchez-Martin, M.S. Rodriguez-Cruz, M.S. Andrades and M. Sanchez-Camazano, Appl. Clay Sci., 31, 216 (2006); https://doi.org/10.1016/j.clay.2005.07.008
- B. Gamiz, M.C. Hermosin, J. Cornejo and R. Celis, Appl. Surf. Sci., 332, 606 (2015); https://doi.org/10.1016/j.apsusc.2015.01.179
- E. Duran, S. Bueno, M.C. Hermosin, L. Cox and B. Gamiz, Sci. Total Environ., 672, 743 (2019); https://doi.org/10.1016/j.scitotenv.2019.04.014
- A. Tomasevic, E. Kiss, S. Petrovic and D. Mijin, Desalination, 262, 228 (2010); https://doi.org/10.1016/j.desal.2010.06.019
- D. Bajuk-Bogdanovic, A. Jovic, B. Nedic Vasiljevic, M. Milojevic-Rakic, M. Kragovic, D. Krajišnik, I. Holclajtner-Antunovic and V. Dondur, Mater. Sci. Eng. B Adv., 225, 60 (2017); https://doi.org/10.1016/j.mseb.2017.08.011
- P.S. Goh and A.F. Ismail, Nanomaterials, 11, 345 (2021); https://doi.org/10.3390/nano11020345
- M.V. Shankar, K.K. Cheralathan, B. Arabindoo, M. Palanichamy and V. Murugesan, J. Mol. Catal. Chem., 223, 195 (2004); https://doi.org/10.1016/j.molcata.2004.03.059
- A.H. Abdullah, L.K. Mun, Z. Zainal and M.Z. Hussein, Int. J. Chem., 5, 1916 (2013); https://doi.org/10.5539/ijc.v5n4p56
- V.K. Gupta, T. Eren, N. Atar, M.L. Yola, C. Parlak and H. Karimi-Maleh, J. Mol. Liq., 208, 122 (2015); https://doi.org/10.1016/j.molliq.2015.04.032
- P.K. Boruah, B. Sharma, N. Hussain and M.R. Das, Chemosphere, 168, 1058 (2017); https://doi.org/10.1016/j.chemosphere.2016.10.103
- S. Anandan, A. Vinu, N. Venkatachalam, B. Arabindoo and V. Murugesan, J. Mol. Catal. Chem., 256, 312 (2006); https://doi.org/10.1016/j.molcata.2006.05.012
- A. Jevremovic, P. Bober, M. Mièušík, J. Kulièek, U. Acharya, J. Pfleger, M. Milojevic-Rakic, D. Krajišnik, M. Trchová, J. Stejskal and G. CiricMarjanovic, Micropor. Mesopor. Mater., 287, 234 (2019); https://doi.org/10.1016/j.micromeso.2019.06.006
- M. Sarno, M. Casa, C. Cirillo and P. Ciambelli, Chem. Eng. Trans., 60, 132 (2017); https://doi.org/10.3303/CET1441037
- S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio and L. Pierella, Appl. Catal. B, 162, 167 (2015); https://doi.org/10.1016/j.apcatb.2014.06.047
- R. Celis, M.A. Adelino, M.C. Hermosín and J. Cornejo, J. Hazard. Mater., 209–210, 67 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.074
- M. Jaiswal, D. Chauhan and N. Sankararamakrishnan, Environ. Sci. Pollut. Res. Int., 19, 2055 (2012); https://doi.org/10.1007/s11356-011-0699-6
- H.N. Bhatti, Z. Mahmood, A. Kausar, S.M. Yakout, O.H. Shair and M. Iqbal, Int. J. Biol. Macromol., 153, 146 (2020); https://doi.org/10.1016/j.ijbiomac.2020.02.306
- K. Sahithya, D. Das and N. Das, J. Mol. Liq., 211, 821 (2015); https://doi.org/10.1016/j.molliq.2015.08.013
- A. Das, J. Singh and K.N. Yogalakshmi, Int. Biodeterior. Biodegr., 117, 183 (2017); https://doi.org/10.1016/j.ibiod.2017.01.007
- S. Shankar and J.W. Rhim, Eds.: A. Dasari and J. Njuguna, Functional and Physical Properties of Polymer Nanocomposites, Chap 3, John Wiley & Sons, Ltd. (2016).
- C. Zhu, W.L. Yang, H. He, C. Yang, J. Yu, X. Wu, G. Zeng, S. Tarre and M. Green, Chemosphere, 200, 380 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.020
- T. Alekseeva, V. Prevot, M. Sancelme, C. Forano and P. Besse-Hoggan, J. Hazard. Mater., 191, 126 (2011); https://doi.org/10.1016/j.jhazmat.2011.04.050
- K. Sahithya, D. Das and N. Das, Process Saf. Environ. Prot., 99, 43 (2016); https://doi.org/10.1016/j.psep.2015.10.009
- S. Moradi Dehaghi, B. Rahmanifar, A.M. Moradi and P.A. Azar, J. Saudi Chem. Soc., 18, 348 (2014); https://doi.org/10.1016/j.jscs.2014.01.004
- N. Saifuddin, C.Y. Nian, L.W. Zhan and K.X. Ning, Asian J. Biochem., 6, 142 (2011); https://doi.org/10.3923/ajb.2011.142.159
- G. Liu, L. Li, D. Xu, X. Huang, X. Xu, S. Zheng, Y. Zhang and H. Lin, Carbohydr. Polym., 175, 584 (2017); https://doi.org/10.1016/j.carbpol.2017.06.074
References
W.A. El-Said, M.E. El-Khouly, M.H. Ali, R.T. Rashad, E.A. Elshehy and A.S. Al-Bogami, J. Environ. Chem. Eng., 6, 2214 (2018); https://doi.org/10.1016/j.jece.2018.03.027
P.V.L. Reddy and K.-H. Kim, J. Hazard. Mater., 285, 325 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.036
E.A.A. Elhussein, S. Sahin and S.S. Bayazit, J. Mol. Liq., 255, 10 (2018); https://doi.org/10.1016/j.molliq.2018.01.165
M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal and V.K. Gupta, Microchem. J., 145, 486 (2019); https://doi.org/10.1016/j.microc.2018.10.053
M.H. Dehghani, Z.S. Niasar, M.R. Mehrnia, M. Shayeghi, M.A. Al-Ghouti, B. Heibati, G. McKay and K. Yetilmezsoy, Chem. Eng. J., 310, 22 (2017); https://doi.org/10.1016/j.cej.2016.10.057
A. Derbalah, A. Ismail and S. Shaheen, Pol. J. Chem. Technol., 15, 25 (2013); https://doi.org/10.2478/pjct-2013-0040
A.A. Khan and T. Akhtar, Desalination, 272, 259 (2011); https://doi.org/10.1016/j.desal.2011.01.033
Q. Yang, J. Wang, W. Zhang, F. Liu, X. Yue, Y. Liu, M. Yang, Z. Li and J. Wang, Chem. Eng. J., 313, 19 (2017); https://doi.org/10.1016/j.cej.2016.12.041
P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis and L. Hens, Front. Public Health, 4, 148 (2016); https://doi.org/10.3389/fpubh.2016.00148
J.Y. Liao, C. Fan, Y.Z. Huang and K.J. Pei, J. Hazard. Mater., 389, 121871 (2020); https://doi.org/10.1016/j.jhazmat.2019.121871
F. López-Osorio and Y. Wurm, Trends Ecol. Evol., 35, 380 (2020); https://doi.org/10.1016/j.tree.2019.12.012
https://www.newscientist.com/article/2216318-decline-of-migrating-birds-could-be-partly-due-to pesticides/.
M. Rani and U. Shanker, J. Environ. Chem. Eng., 6, 1512 (2018); https://doi.org/10.1016/j.jece.2018.01.060
S. Kalidhasan, I. Dror and B. Berkowitz, Sci. Rep-UK, 7, 1415 (2017); https://doi.org/10.1038/s41598-017-01429-5
E. Vázquez-Núñez, C.E. Molina-Guerrero, J.M. Peña-Castro, F. Fernández-Luqueño and M.G. de la Rosa-Álvarez, Process, 8, 826 (2020); https://doi.org/10.3390/pr8070826
M.A. Nascimento, R.P. Lopes, J.C. Cruz, A.A. Silva and C.F. Lima, Environ. Pollut., 211, 406 (2016); https://doi.org/10.1016/j.envpol.2015.12.043
F.D. Guerra, M.F. Attia, D.C. Whitehead and F. Alexis, Molecules, 23, 1760 (2018); https://doi.org/10.3390/molecules23071760
L.A. Paramo, A.A. Feregrino-Pérez, R. Guevara, S. Mendoza and K. Esquivel, Nanomaterials, 10, 1654 (2020); https://doi.org/10.3390/nano10091654
T.T. Firozjaee, N. Mehrdadi, M. Baghdadi and G.R.N. Bidhendi, Int. J. Nanosci. Nanotechnol., 14, 43 (2018).
A. Behera, B. Mittu, S. Padhi, N. Patra and J. Singh, Eds.: ed. K.A.A. Elsalam, Bimetallic Nanoparticles: Green Synthesis, Applications and Future Perspectives, Chap. 25, Elsevier (2020).
C. Fan, Y.L. Liang, H. Dong, G. Ding, W. Zhang, G. Tang, J. Yang, D. Kong, D. Wang and Y. Cao, Anal. Chim. Acta, 975, 20 (2017); https://doi.org/10.1016/j.aca.2017.04.036
T. Kaur, A. Sraw, R.K. Wanchoo and A.P. Toor, Mater. Today Proc., 3, 354 (2016); https://doi.org/10.1016/j.matpr.2016.01.020
G. Roselló-Márquez, R.M. Fernández-Domene, R. Sánchez-Tovar, S. García-Carrión, B. Lucas-Granados and J. García-Antón, Sci. Total Environ., 674, 88 (2019); https://doi.org/10.1016/j.scitotenv.2019.04.150
A.K. Sharma, R.K. Tiwari and M.S. Gaur, Arab. J. Chem., 9, S1755 (2016); https://doi.org/10.1016/j.arabjc.2012.04.044
J. Burbano, I. Cruz, J. Colina-Marquez, A. López-Vásquez and F. Machuca, J. Adv. Oxid. Technol., 11, 49 (2008); https://doi.org/10.1515/jaots-2008-0106
T.M.S. Rosbero and D.H. Camacho, J. Environ. Chem. Eng., 5, 2524 (2017); https://doi.org/10.1016/j.jece.2017.05.009
A. Iqbal, A. Haq, G.A. Cerron-Calle, S.A.R. Naqvi, P. Westerhoff and S. Garcia-Segura, Catalysts, 11, 806 (2021); https://doi.org/10.3390/catal11070806
A.M. Ismael, A.N. El-Shazly, S.E. Gaber, M.M. Rashad, A.H. Kamel and S.S.M. Hassan, RSC Adv., 10, 34806 (2020); https://doi.org/10.1039/D0RA02874F
A. Singhal and M.L. Lind, Int. J. Nanomedicine, 13, 25 (2018); https://doi.org/10.2147/IJN.S124700
T. Momic, T.L. Pašti, U. Bogdanovic, V. Vodnik, A. Mrakovic, Z. Rakoèevic, V.B. Pavlovic and V. Vasic, J. Nanomater., 2016, 8910271 (2016); https://doi.org/10.1155/2016/8910271
G. Manimegalai, S. Shanthakumar and C. Sharma, Int. Nano Lett., 4, 105 (2014); https://doi.org/10.1007/s40089-014-0105-8
S. Abbas, S. Nasreen, A. Haroon and M.A. Ashraf, Saudi J. Biol. Sci., 27, 1016 (2020); https://doi.org/10.1016/j.sjbs.2020.02.011
M. Jesús Lerma-García, E.F. Simó-Alfonso, M. Zougagh and Á. Ríos, Talanta, 105, 372 (2013); https://doi.org/10.1016/j.talanta.2012.10.056
M. Zubair, M. Daud, G. McKay, F. Shehzad and M.A. Al-Harthi, Appl. Clay Sci., 143, 279 (2017); https://doi.org/10.1016/j.clay.2017.04.002
R. Otero, J.M. Fernández, M.A. Gonzalez, I. Pavlovic and M.A. Ulibarri, Chem. Eng. J., 221, 214 (2013); https://doi.org/10.1016/j.cej.2013.02.007
R. Otero, J.M. Fernández, M.A. Ulibarri, R. Celis and F. Bruna, Appl. Clay Sci., 65-66, 72 (2012); https://doi.org/10.1016/j.clay.2012.04.022
F. Bruna, I. Pavlovic, C. Barriga, J. Cornejo and M.A. Ulibarri, Appl. Clay Sci., 33, 116 (2006); https://doi.org/10.1016/j.clay.2006.04.004
F. Li, Y. Wang, Q. Yang, D.G. Evans, C. Forano and X. Duan, J. Hazard. Mater., 125, 89 (2005); https://doi.org/10.1016/j.jhazmat.2005.04.037
I. Pavlovic, C. Barriga, M.C. Hermosin, J. Cornejo and M.A. Ulibarri, Appl. Clay Sci., 30, 125 (2005); https://doi.org/10.1016/j.clay.2005.04.004
K. Sahithya, D. Das and N. Das, Environ. Prog. Sustain. Energy, 36, 180 (2017); https://doi.org/10.1002/ep.12494
H. Tavakkoli and M. Yazdanbakhsh, Micropor. Mesopor. Mater., 176, 86 (2013); https://doi.org/10.1016/j.micromeso.2013.03.043
D. Koushik, S. Sen Gupta, S.M. Maliyekkal and T. Pradeep, J. Hazard. Mater., 308, 192 (2016); https://doi.org/10.1016/j.jhazmat.2016.01.004
M. Guo, X. Weng, T. Wang and Z. Chen, Sep. Purif. Technol., 175, 222 (2017); https://doi.org/10.1016/j.seppur.2016.11.042
L. Jing, C. Yang and Z. Zongshan, J. Wuhan Univ. Technol. Mater. Sci. Ed., 29, 168 (2013).
I. San Román, M.L. Alonso, L. Bartolomé, A. Galdames, E. Goiti, M. Ocejo, M. Moragues, R.M. Alonso and J.L. Vilas, Chemosphere, 93, 1324 (2013); https://doi.org/10.1016/j.chemosphere.2013.07.050
S.H. Khan and B. Pathak, Environ. Nonotech. Monit. Manag., 13, 100290 (2020); https://doi.org/10.1016/j.enmm.2020.100290
S.H. Khan, B. Pathak and M.H. Fulekar, Front. Nanosci. Nanotech., 1, 23 (2015); https://doi.org/10.15761/FNN.1000105
S.S. Essa, E.M. El-Saied, O.S. El-Tawil, I.M. Gamal and S.S. Abd El-Rahman, Vet. World, 12, 440 (2019); https://doi.org/10.14202/vetworld.2019.440-448
Y. Kaur, Y. Bhatia, S. Chaudhary and G.R. Chaudhary, J. Mol. Liq., 234, 94 (2017); https://doi.org/10.1016/j.molliq.2017.03.069
D.Z. Husein, R. Hassanien and M.F. Al-Hakkani, Heliyon, 5, e02339 (2019); https://doi.org/10.1016/j.heliyon.2019.e02339
D. Mitra and L. Varshney, IOSR J. Environ. Sci. Toxicol. Food Technol., 7, 8 (2013); https://doi.org/10.9790/2402-0720811
K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla and V.G. Gandhi, Water-Energy Nexus, 3, 46 (2020); https://doi.org/10.1016/j.wen.2020.03.008
A. Amalraj and A. Pius, J. Water Process Eng., 7, 94 (2015); https://doi.org/10.1016/j.jwpe.2015.06.002
S. Liu, L. Xie, J. Zheng, R. Jiang, F. Zhu, T. Luan and G. Ouyang, Anal. Chim. Acta, 878, 109 (2015); https://doi.org/10.1016/j.aca.2015.03.054
A.B. Lavand and Y.S. Malghe, J. Saudi Chem. Soc., 19, 471 (2015); https://doi.org/10.1016/j.jscs.2015.07.001
K. Gandhi, C. Vasudeva, V. Singh and M. Umekar, Clean Eng. Technol., 4, 100163 (2021); https://doi.org/10.1016/j.clet.2021.100163
D.M. Fouad and M.B. Mohammed, J. Nanomater., 2012, 524123 (2012); https://doi.org/10.1155/2012/524123
S.S. Gupta, I. Chakraborty, S.M. Maliyekkal, T.A. Mark, D.K. Pandey, S.K. Das and T. Pradeep, ACS Sustain. Chem.& Eng., 3, 1155 (2015); https://doi.org/10.1021/acssuschemeng.5b00080
M. Khoshnood and S. Azizian, J. Ind. Eng. Chem., 18, 1796 (2012); https://doi.org/10.1016/j.jiec.2012.04.007
S. Agarwal, N. Sadeghi, I. Tyagi, V.K. Gupta and A. Fakhri, J. Colloid Interface Sci., 478, 430 (2016); https://doi.org/10.1016/j.jcis.2016.06.029
I. Ali, O.M.L. Alharbi, Z.A. ALOthman, A.M. Al-Mohaimeed and A. Alwarthan, Environ. Res., 170, 389 (2019); https://doi.org/10.1016/j.envres.2018.12.066
G. Cavallaro, G. Lazzara, E. Rozhina, S. Konnova, M. Kryuchkova, N. Khaertdinov and R. Fakhrullin, RSC Adv., 9, 40553 (2019); https://doi.org/10.1039/C9RA08230A
A. Ouali, L.S. Belaroui, A. Bengueddach, A.L. Galindo and A. Peña, Appl. Clay Sci., 115, 67 (2015); https://doi.org/10.1016/j.clay.2015.07.026
M. Calabi Floody, B.K.G. Theng, P. Reyes and M.L. Mora, Clay Miner., 44, 161 (2009); https://doi.org/10.1180/claymin.2009.044.2.161
B. Biswas, L.N. Warr, E.F. Hilder, N. Goswami, M.M. Rahman, J.G. Churchman, K. Vasilev, G. Pan and R. Naidu, Chem. Soc. Rev., 48, 3740 (2019); https://doi.org/10.1039/C8CS01019F
H. Guan and Y. Zhao, Clay Nanoparticles, 203-224 (2020); https://doi.org/10.1016/B978-0-12-816783-0.00009-8
B.N. Vasiljevic, M. Obradovic, D. Bajuk-Bogdanovic, M. Milojevic-Rakic, Z. Jovanovic, N. Gavrilov and I. Holclajtner-Antunovic, J. Environ. Sci., 81, 136 (2019); https://doi.org/10.1016/j.jes.2019.01.018
T. Tsoufis, F. Katsaros, B.J. Kooi, S. Papageorgiou, Y. Deligiannakis, E. Bletsa and I. Panagiotopoulos, Chem. Eng. J., 313, 466 (2017); https://doi.org/10.1016/j.cej.2016.12.056
D. Bielska, A. Karewicz, T. Lachowicz, K. Berent, K. Szczubialka and M. Nowakowska, Chem. Eng. J., 262, 125 (2015); https://doi.org/10.1016/j.cej.2014.09.081
S.F.A. Shattar, N.A. Zakaria and K.Y. Foo, J. Mater. Res. Technol., 8, 4713 (2019); https://doi.org/10.1016/j.jmrt.2019.08.017
E. Bojemueller, A. Nennemann and G. Lagaly, Appl. Clay Sci., 18, 277 (2001); https://doi.org/10.1016/S0169-1317(01)00027-8
M.J. Sanchez-Martin, M.S. Rodriguez-Cruz, M.S. Andrades and M. Sanchez-Camazano, Appl. Clay Sci., 31, 216 (2006); https://doi.org/10.1016/j.clay.2005.07.008
B. Gamiz, M.C. Hermosin, J. Cornejo and R. Celis, Appl. Surf. Sci., 332, 606 (2015); https://doi.org/10.1016/j.apsusc.2015.01.179
E. Duran, S. Bueno, M.C. Hermosin, L. Cox and B. Gamiz, Sci. Total Environ., 672, 743 (2019); https://doi.org/10.1016/j.scitotenv.2019.04.014
A. Tomasevic, E. Kiss, S. Petrovic and D. Mijin, Desalination, 262, 228 (2010); https://doi.org/10.1016/j.desal.2010.06.019
D. Bajuk-Bogdanovic, A. Jovic, B. Nedic Vasiljevic, M. Milojevic-Rakic, M. Kragovic, D. Krajišnik, I. Holclajtner-Antunovic and V. Dondur, Mater. Sci. Eng. B Adv., 225, 60 (2017); https://doi.org/10.1016/j.mseb.2017.08.011
P.S. Goh and A.F. Ismail, Nanomaterials, 11, 345 (2021); https://doi.org/10.3390/nano11020345
M.V. Shankar, K.K. Cheralathan, B. Arabindoo, M. Palanichamy and V. Murugesan, J. Mol. Catal. Chem., 223, 195 (2004); https://doi.org/10.1016/j.molcata.2004.03.059
A.H. Abdullah, L.K. Mun, Z. Zainal and M.Z. Hussein, Int. J. Chem., 5, 1916 (2013); https://doi.org/10.5539/ijc.v5n4p56
V.K. Gupta, T. Eren, N. Atar, M.L. Yola, C. Parlak and H. Karimi-Maleh, J. Mol. Liq., 208, 122 (2015); https://doi.org/10.1016/j.molliq.2015.04.032
P.K. Boruah, B. Sharma, N. Hussain and M.R. Das, Chemosphere, 168, 1058 (2017); https://doi.org/10.1016/j.chemosphere.2016.10.103
S. Anandan, A. Vinu, N. Venkatachalam, B. Arabindoo and V. Murugesan, J. Mol. Catal. Chem., 256, 312 (2006); https://doi.org/10.1016/j.molcata.2006.05.012
A. Jevremovic, P. Bober, M. Mièušík, J. Kulièek, U. Acharya, J. Pfleger, M. Milojevic-Rakic, D. Krajišnik, M. Trchová, J. Stejskal and G. CiricMarjanovic, Micropor. Mesopor. Mater., 287, 234 (2019); https://doi.org/10.1016/j.micromeso.2019.06.006
M. Sarno, M. Casa, C. Cirillo and P. Ciambelli, Chem. Eng. Trans., 60, 132 (2017); https://doi.org/10.3303/CET1441037
S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio and L. Pierella, Appl. Catal. B, 162, 167 (2015); https://doi.org/10.1016/j.apcatb.2014.06.047
R. Celis, M.A. Adelino, M.C. Hermosín and J. Cornejo, J. Hazard. Mater., 209–210, 67 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.074
M. Jaiswal, D. Chauhan and N. Sankararamakrishnan, Environ. Sci. Pollut. Res. Int., 19, 2055 (2012); https://doi.org/10.1007/s11356-011-0699-6
H.N. Bhatti, Z. Mahmood, A. Kausar, S.M. Yakout, O.H. Shair and M. Iqbal, Int. J. Biol. Macromol., 153, 146 (2020); https://doi.org/10.1016/j.ijbiomac.2020.02.306
K. Sahithya, D. Das and N. Das, J. Mol. Liq., 211, 821 (2015); https://doi.org/10.1016/j.molliq.2015.08.013
A. Das, J. Singh and K.N. Yogalakshmi, Int. Biodeterior. Biodegr., 117, 183 (2017); https://doi.org/10.1016/j.ibiod.2017.01.007
S. Shankar and J.W. Rhim, Eds.: A. Dasari and J. Njuguna, Functional and Physical Properties of Polymer Nanocomposites, Chap 3, John Wiley & Sons, Ltd. (2016).
C. Zhu, W.L. Yang, H. He, C. Yang, J. Yu, X. Wu, G. Zeng, S. Tarre and M. Green, Chemosphere, 200, 380 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.020
T. Alekseeva, V. Prevot, M. Sancelme, C. Forano and P. Besse-Hoggan, J. Hazard. Mater., 191, 126 (2011); https://doi.org/10.1016/j.jhazmat.2011.04.050
K. Sahithya, D. Das and N. Das, Process Saf. Environ. Prot., 99, 43 (2016); https://doi.org/10.1016/j.psep.2015.10.009
S. Moradi Dehaghi, B. Rahmanifar, A.M. Moradi and P.A. Azar, J. Saudi Chem. Soc., 18, 348 (2014); https://doi.org/10.1016/j.jscs.2014.01.004
N. Saifuddin, C.Y. Nian, L.W. Zhan and K.X. Ning, Asian J. Biochem., 6, 142 (2011); https://doi.org/10.3923/ajb.2011.142.159
G. Liu, L. Li, D. Xu, X. Huang, X. Xu, S. Zheng, Y. Zhang and H. Lin, Carbohydr. Polym., 175, 584 (2017); https://doi.org/10.1016/j.carbpol.2017.06.074