Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Compendious Prospective about Biogenesis of Nanoparticles and their Persuasions: A Review
Corresponding Author(s) : Shweta Yadav
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Nanotechnology cogitates manufacturing and exploitation of materials, in which all components are present at the nanoscale and their size ranges up to 100 nm. Nanoparticles can be synthesized chemically or biologically; nevertheless, biologically synthesized nanoparticles are less toxic to the environment and human health. Biogenesis of nanoparticles is acquiring momentum due to the use of biocompatible precursors’ viz., fungi, algae and various plant extracts. Nanoparticles are being useful in various branches of industrial products including energy storage and daily applications namely cosmetics, garments, optical stuff, catalytic, bactericidal, electronics, biological labeling as well as treatment of certain cancerous diseases. Due to their mounting applications, it is essential to develop a toxic-free approach for the synthesis of nanoparticles and their assemblage to eradicate the use of hazardous substances. The broad spectrum of naturally occurring cost effective precursors are available, which can be used in biomedicine, biosensors development, organic dyes and in the fabrication of nanodevices, etc. The study has reviewed the prospective of biocompatible organically synthesized nanoparticles and their cogency in various fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.E. Lohse and C.J. Murphy, J. Am. Chem. Soc., 134, 15607 (2012); https://doi.org/10.1021/ja307589n
- E. Da Silva, W. Dayoub, N. Duguet, E. Métay, F. Popowycz and M. Lemaire, C.R. Chim., 16, 343 (2013); https://doi.org/10.1016/j.crci.2012.12.019
- A. Husen and K.S. Siddiqi, Nanoscale Res. Lett., 9, 229 (2014); https://doi.org/10.1186/1556-276X-9 229
- N. Sarwar, U.B. Humayoun, M. Kumar, S.F. Zaidi, J.H. Yoo, N. Ali, D.I. Jeong, J.H. Lee and D.H. Yoon, J. Clean. Prod., 292, 125974 (2021); https://doi.org/10.1016/j.jclepro.2021.125974
- A.U. Khan, Y. Wei, A. Ahmad, Z.U. Haq Khan, K. Tahir, S.U. Khan, N. Muhammad, F.U. Khan and Q. Yuan, J. Mol. Liq., 215, 39 (2016); https://doi.org/10.1016/j.molliq.2015.12.019
- I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- Q. Yue, Y. Zhang, Y. Jiang, J. Li, H. Zhang, C. Yu, A.A. Elzatahry, A. Alghamdi, Y. Deng and D. Zhao, J. Am. Chem. Soc., 139, 4954 (2017); https://doi.org/10.1021/jacs.7b01464
- K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart, J. Liu, C. Majidi, R.S. Ruoff, P.S. Weiss and M.D. Dickey, ACS Nano, 13, 7388 (2019); https://doi.org/10.1021/acsnano.9b04843
- G.A. Somorjai, F. Tao and J.Y. Park, Top. Catal., 47, 1 (2008); https://doi.org/10.1007/s11244-007-9028-1
- T.J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook and S.T. Pantelides, Nano Lett., 12, 3038 (2012); https://doi.org/10.1021/nl3008727
- V. Armendariz, I. Herrera, J.R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago and J.L. Gardea-Torresdey, J. Nanopart. Res., 6, 377 (2004); https://doi.org/10.1007/s11051-004-0741-4
- A. Singh, R. Pasricha and M. Sastry, Analyst, 137, 3083 (2012); https://doi.org/10.1039/c2an35162e
- S. Lin, H.R. Mackey, T. Hao, G. Guo, M.C. van Loosdrecht and G. Chen, Water Res., 143, 399 (2018); https://doi.org/10.1016/j.watres.2018.06.051
- Q.H. Tran, V.Q. Nguyen and A.T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 049501 (2018); https://doi.org/10.1088/2043-6254/aad12b
- M. Darroudi, M.B. Ahmad, R. Zamiri, A.K. Zak, A.H. Abdullah and N.A. Ibrahim, Int. J. Nanomedicine, 6, 677 (2011); https://doi.org/10.2147/IJN.S17669
- S.V. Kuchibhatla, A.S. Karakoti, D.R. Baer, S. Samudrala, M.H. Engelhard, J.E. Amonette, S. Thevuthasan and S. Seal, J. Phys. Chem. C, 116, 14108 (2012); https://doi.org/10.1021/jp300725s
- K.L. Garner and A.A. Keller, J. Nanopart. Res., 16, 2503 (2014); https://doi.org/10.1007/s11051-014-2503-2
- V. Sarathy, P.G. Tratnyek, J.T. Nurmi, D.R. Baer, J.E. Amonette, C.L. Chun, R.L. Penn and E.J. Reardon, J. Phys. Chem. C, 112, 2286 (2008); https://doi.org/10.1021/jp0777418
- Y. Park, Y.N. Hong, A. Weyers, Y.S. Kim and R.J. Linhardt, IET Nanobiotechnol., 5, 69 (2011); https://doi.org/10.1049/iet-nbt.2010.0033
- R.G. Haverkamp, A.T. Marshall and D. van Agterveld, J. Nanopart. Res., 9, 697 (2007); https://doi.org/10.1007/s11051-006-9198-y
- P. Singh, Y.J. Kim, D. Zhang and D.C. Yang, Trends Biotechnol., 34, 588 (2016); https://doi.org/10.1016/j.tibtech.2016.02.006
- D. Hao, Y. Xu, M. Zhao, J. Ma, Y. Wei and X. Wang, J. Photochem. Photobiol., 202, 111674 (2020); https://doi.org/10.1016/j.jphotobiol.2019.111674
- N. Krithiga, A. Rajalakshmi and A. Jayachitra, J. Nanosci., 2015, 928204 (2015); https://doi.org/10.1155/2015/928204
- I.R. Bunghez, M.E. Barbinta Patrascu, N.M. Badea, S.M. Doncea, A. Popescu and R.M. Ion, J. Optoelectron. Adv. Mater., 14, 1016 (2012).
- S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
- S. Iravani and B. Zolfaghari, BioMed Res. Int., 2013, 639725 (2013); https://doi.org/10.1155/2013/639725
- M. Prathap, A. Alagesan and B.D. Ranjitha Kumari, J. Nanostruct. Chem., 4, 106 (2014); https://doi.org/10.1007/s40097-014-0106-1
- S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152
- M. Safaepour, A.R. Shahverdi, H.R. Shahverdi, M.R. Khorramizadeh and A.R. Gohari, Avicenna J. Med. Biotechnol., 1, 111 (2009).
- J. Kesharwani, K.Y. Yoon, J. Hwang and M. Rai, J. Bionanosci., 3, 39 (2009); https://doi.org/10.1166/jbns.2009.1008
- S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S.S. Cameotra, J. Bellare, D.D. Dhavale, A. Jabgunde and B.A. Chopade, Int. J. Nanomedicine, 7, 483 (2012); https://doi.org/10.2147/IJN.S24793
- M. Wypij, J. Czarnecka, M. Swiecimska, H. Dahm, M. Rai and P. Golinska, World J. Microbiol. Biotechnol., 34, 23 (2018); https://doi.org/10.1007/s11274-017-2406-3
- S. Jebril, R.K. Ben Jenana and C. Dridi, Mater. Chem. Phys., 248, 122898 (2020); https://doi.org/10.1016/j.matchemphys.2020.122898
- G. Rajakumar and A. Abdul Rahuman, Acta Trop., 118, 196 (2011); https://doi.org/10.1016/j.actatropica.2011.03.003
- K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy and J. Musarrat, PLoS One, 10, e0131178 (2015); https://doi.org/10.1371/journal.pone.0131178
- R. Prasad and V.S. Swamy, J. Nanomater., 2013, 431218 (2013); https://doi.org/10.1155/2013/431218
- P. Tippayawat, N. Phromviyo, P. Boueroy and A. Chompoosor, PeerJ, 4, e2589 (2016); https://doi.org/10.7717/peerj.2589
- G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma and R.P. Singh, J. Nanopart. Res., 13, 2981 (2011); https://doi.org/10.1007/s11051-010-0193-y
- M.Z. Khan, F.K. Tarek, M. Nuzat, M.A. Momin and M.R. Hasan, J. Nanosci., 2017, 1693416 (2017); https://doi.org/10.1155/2017/1693416
- P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
- H.M. Ibrahim, J. Radiat. Res. Appl. Sci., 8, 265 (2015); https://doi.org/10.1016/j.jrras.2015.01.007
- J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104
- A. Chahardoli, N. Karimi and A. Fattahi, Iran. J. Pharm. Res., 16, 1167 (2017).
- S.S. Shankar, A. Ahmad, R. Pasricha and M. Sastry, J. Mater. Chem., 13, 1822 (2003); https://doi.org/10.1039/b303808b
- S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003
- D. Raghunandan, B. Ravishankar, G. Sharanbasava, D.B. Mahesh, V. Harsoor, M.S. Yalagatti, M. Bhagawanraju and A. Venkataraman, Cancer Nanotechnol., 2, 57 (2011); https://doi.org/10.1007/s12645-011-0014-8
- U.K. Parida, B.K. Bindhani and P. Nayak, World J. Nano Sci. Eng., 1, 93 (2011); https://doi.org/10.4236/wjnse.2011.14015
- J. Kasthuri, K. Kathiravan and N. Rajendiran, J. Nanopart. Res., 11, 1075 (2009); https://doi.org/10.1007/s11051-008-9494-9
- K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
- K.M. Kumar, B.K. Mandal, M. Sinha and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 86, 490 (2012); https://doi.org/10.1016/j.saa.2011.11.001
- Q. Liu, H. Liu, Z. Yuan, D. Wei and Y. Ye, Colloids Surf. Biointerfaces, 92, 348 (2012); https://doi.org/10.1016/j.colsurfb.2011.12.007
- P. Daisy and K. Saipriya, Int. J. Nanomedicine, 7, 1189 (2012); https://doi.org/10.2147/IJN.S26650
- L. Castro, M.L. Blázquez, J.A. Muñoz, F. González, C. García-Balboa and A. Ballester, Process Biochem., 46, 1076 (2011); https://doi.org/10.1016/j.procbio.2011.01.025
- J. Anuradha, T. Abbasi and S.A. Abbasi, Res. J. Biotechnol., 5, 75 (2010).
- S. Medda, A. Hajra, U. Dey, P. Bose and N.K. Mondal, Appl. Nanosci., 5, 875 (2015); https://doi.org/10.1007/s13204-014-0387-1
- S.K. Boruah, P.K. Boruah, P. Sarma, C. Medhi and O.K. Medhi, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
- S. Küünal, P. Rauwel and E. Rauwel, Emerg. Appl. Nanopart. Archit. Nanostruct., 411 (2018); https://doi.org/10.1016/B978-0-323-51254-1.00014-2
- A.D. Dwivedi and K. Gopal, Colloids Surf. A Physicochem. Eng. Asp., 369, 27 (2010); https://doi.org/10.1016/j.colsurfa.2010.07.020
- S.P. Dubey, M. Lahtinen and M. Sillanpää, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024
- D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 374 (2009); https://doi.org/10.1016/j.saa.2009.02.037
- G. Zhan, J. Huang, L. Lin, W. Lin, K. Emmanuel and Q. Li, J. Nanopart. Res., 13, 4957 (2011); https://doi.org/10.1007/s11051-011-0476-y
- R. Mata, J.R. Nakkala and S.R. Sadras, Colloids Surf. Biointerfaces, 143, 499 (2016); https://doi.org/10.1016/j.colsurfb.2016.03.069
- F.A.A. Rajathi, R. Arumugam, S. Saravanan and P. Anantharaman, J. Photochem. Photobiol., 135, 75 (2014); https://doi.org/10.1016/j.jphotobiol.2014.03.016
- T. Abbasi, J. Anuradha, S.U. Ganaie and S.A. Abbasi, J. King Saud Univ. Sci., 27, 15 (2015); https://doi.org/10.1016/j.jksus.2014.04.001
- M.F. Zayed and W.H. Eisa, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 238 (2014); https://doi.org/10.1016/j.saa.2013.10.092
- J. Das and P. Velusamy, J. Taiwan Inst. Chem. Eng., 45, 2280 (2014); https://doi.org/10.1016/j.jtice.2014.04.005
- K. Mapala and M. Pattabi, NanoWorld J., 3, 44 (2017); https://doi.org/10.17756/nwj.2017-045
- A. Dzimitrowicz, P. Jamróz, G.C. diCenzo, I. Sergiel, T. Kozlecki and P. Pohl, Arab. J. Chem., 12, 4118 (2019); https://doi.org/10.1016/j.arabjc.2016.04.004
- M.V. Sujitha and S. Kannan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 102, 15 (2013); https://doi.org/10.1016/j.saa.2012.09.042
- A.A. Zahir, I.S. Chauhan, A. Bagavan, C. Kamaraj, G. Elango, J. Shankar, N. Arjaria, M. Roopan, A.A. Rahuman and N. Singh, Antimicrob. Agents Chemother., 59, 4782 (2015); https://doi.org/10.1128/AAC.00098-15
- M. Nasrollahzadeh and S.M. Sajadi, J. Colloid Interface Sci., 457, 141 (2015); https://doi.org/10.1016/j.jcis.2015.07.004
- G. Elango and S.M. Roopan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 139, 367 (2015); https://doi.org/10.1016/j.saa.2014.12.066
- A. Kalaiselvi, S.M. Roopan, G. Madhumitha, C. Ramalingam and G. Elango, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 116 (2015); https://doi.org/10.1016/j.saa.2014.07.010
- G.J. Zhou, S.H. Li, Y.C. Zhang and Y.Z. Fu, J. Nanosci. Nanotechnol., 14, 4437 (2014); https://doi.org/10.1166/jnn.2014.8259
- D. Suresh, R.M. Shobharani, P.C. Nethravathi, M.A. Pavan Kumar, H. Nagabhushana and S.C. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 141, 128 (2015); https://doi.org/10.1016/j.saa.2015.01.048
- S. Shende, A.P. Ingle, A. Gade and M. Rai, World J. Microbiol. Biotechnol., 31, 865 (2015); https://doi.org/10.1007/s11274-015-1840-3
- T. Naseem and M.A. Farrukh, J. Chem., 2015, 912342 (2015); https://doi.org/10.1155/2015/912342
- S.K. Dorcheh and K. Vahabi, Eds.: J. Mérillon and K. Ramawat, Biosynthesis of Nanoparticles by Fungi: Large-Scale Production, In: Fungal Metabolites, Springer: Switzerland, pp. 395-414 (2016).
- A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1
- C.L. Keat, A. Aziz, A.M. Eid and N.A. Elmarzugi, Bioresour. Bioprocess., 2, 47 (2015); https://doi.org/10.1186/s40643-015-0076-2
- D. Scott, M. Toney and M. Muzikár, J. Am. Chem. Soc., 130, 865 (2008); https://doi.org/10.1021/ja074660g
- P. Khandel and S.K. Shahi, J. Nanostructure Chem., 8, 369 (2018); https://doi.org/10.1007/s40097-018-0285-2
- N. Marooufpour, M. Alizadeh, M. Hatami and B.A. Lajayer, Eds.: R. Prasad, Biological Synthesis of Nanoparticles by Different Groups of Bacteria, In: Microbial Nanobionics, Springer, Cham., pp 63-85 (2019); https://doi.org/10.1007/978-3-030-16383-9_3
- S. Hasan, Res. J. Recent Sci., 4, 1 (2015).
- J. Saxena, M.M. Sharma, S. Gupta and A. Singh, World J. Pharm. Sci., 3, 1586 (2014).
- X. Li, H. Xu, Z.S. Chen and G. Chen, J. Nanomater., 2011, 270974 (2011); https://doi.org/10.1155/2011/270974
- N. Pantidos and L.E. Horsfall, J. Nanomed. Nanotechnol., 5, 233 (2014); https://doi.org/10.4172/2157 7439.1000233
- P. Rauwel, E. Raüwal, S. Ferdov and M.P. Singh, Adv. Mater. Sci. Eng., 2015, 624394 (2015); https://doi.org/10.1155/2015/624394
- R. Chaudhary, K. Nawaz, A.K. Khan, C. Hano, B.H. Abbasi and S. Anjum, Biomolecules, 10, 1498 (2020); https://doi.org/10.3390/biom10111498
- M. Mahdieh, A. Zolanvari, A.S. Azimee and M. Mahdieh, Sci. Iran., 19, 926 (2012); https://doi.org/10.1016/j.scient.2012.01.010
- S. Menon, S. Rajeshkumar and V. Kumar, Res.-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
- E. Maine, P.H. Soh and N. Dos Santos, Technovation, 39-40, 53 (2015); https://doi.org/10.1016/j.technovation.2014.02.007
- A. Loureiro, N. G. Azoia, A. C. Gomes and A. Cavaco-Paulo, Curr. Pharm. Des., 22, 1371 (2016); https://doi.org/10.2174/1381612822666160125114900
- P. Golinska, M. Wypij, A.P. Ingle, I. Gupta, H. Dahm and M. Rai, Appl. Microbiol. Biotechnol., 98, 8083 (2014); https://doi.org/10.1007/s00253-014-5953-7
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
- E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. LopezMachado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia and E.B. Souto, Nanomaterials, 10, 292 (2020); https://doi.org/10.3390/nano10020292
- J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.-S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001
- S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary and K. Srinivasan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 594 (2011); https://doi.org/10.1016/j.saa.2011.03.040
- P. Logeswari, S. Silambarasan and J. Abraham, J. Saudi Chem. Soc., 19, 311 (2015); https://doi.org/10.1016/j.jscs.2012.04.007
- A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347
- O. Mahapatra, M. Bhagat, C. Gopalakrishnan and K.D. Arunachalam, J. Exp. Nanosci., 3, 185 (2008); https://doi.org/10.1080/17458080802395460
- C. Marambio-Jones and E.M. Hoek, J. Nanopart. Res., 12, 1531 (2010); https://doi.org/10.1007/s11051-010-9900-y
- K.V. Reichelt, P. Hoffmann-Lücke, B. Hartmann, B. Weber, J.P. Ley, G.E. Krammer, K.M. Swanepoel and K.-H. Engel, S. Afr. J. Bot., 83, 1 (2012); https://doi.org/10.1016/j.sajb.2012.07.006
- M.S. Akhtar, J. Panwar and Y.S. Yun, ACS Sustain. Chem.& Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
- A. Andleeb, A. Andleeb, S. Asghar, G. Zaman, M. Tariq, A. Mehmood, M. Nadeem, C. Hano, J.M. Lorenzo and B.H. Abbasi, Cancers, 13, 2818 (2021); https://doi.org/10.3390/cancers13112818
- V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann and R. Schnettler, Biomaterials, 25, 4383 (2004); https://doi.org/10.1016/j.biomaterials.2003.10.078
- C. Dipankar and S. Murugan, Colloids Surf. Biointerfaces, 98, 112 (2012); https://doi.org/10.1016/j.colsurfb.2012.04.006
- T.Y. Suman, S.R. Radhika Rajasree, A. Kanchana and S.B. Elizabeth, Colloids Surf. Biointerfaces, 106, 74 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.037
- O. Lushchak, A. Zayachkivska and A. Vaiserman, Oxid. Med. Cellular Long., 2018, 3407375 (2018); https://doi.org/10.1155/2018/3407375
- L. Swarnalatha and P.N. Reddy, Asian Pac. J. Trop. Biomed., 2, 1900 (2012); https://doi.org/10.1016/S2221-1691(12)60518-8
- H.H. Lara, N.V. Ayala-Nuñez, L. Ixtepan-Turrent and C. RodriguezPadilla, J. Nanobiotechnol., 8, 1 (2010); https://doi.org/10.1186/1477-3155-8-1
- U. Suriyakalaa, J.J. Antony, S. Suganya, D. Siva, S. Kamalakkannan, R. Sukirtha, P.T. Pichiah and S. Achiraman, Colloids Surf. Biointerfaces, 102, 189 (2013); https://doi.org/10.1016/j.colsurfb.2012.06.039
- R.W. Sun, R. Chen, N.P. Chung, C.M. Ho, C.L. Lin and C.M. Che, Chem. Commun., 5059 (2005); https://doi.org/10.1039/b510984a
- S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito and T. Yoshikawa, Nanomedicine, 6, 570 (2010); https://doi.org/10.1016/j.nano.2009.12.002
- A. Asaikkutti, P.S. Bhavan, K. Vimala. P. Cheruparambath and M. Karthik, J. Trace Elem. Med. Biol., 35, 7 (2016); https://doi.org/10.1016/j.jtemb.2016.01.005
- J. Weiss, P. Takhistov and D.J. McClements, J. Food Sci., 71, 107 (2006); https://doi.org/10.1111/j.1750-3841.2006.00195.x
- S. Ahmad, I. Tauseef, K.S. Haleem, K. Khan, M. Shahzad, M. Ali and F. Sultan, Appl. Nanosci., 10, 4459 (2019); https://doi.org/10.1007/s13204-019-01221-z
- R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
- J. Wang, W.D. Zhang, W.X. Ouyang and Y.X. Yu, Mater. Lett., 154, 44 (2015); https://doi.org/10.1016/j.matlet.2015.04.048
- S.A. Moon, B.K. Salunke, B. Alkotaini, E. Sathiyamoorthi and B.S. Kim, IET Nanobiotechnol., 9, 220 (2015); https://doi.org/10.1049/iet-nbt.2014.0051
- S. Qasim, A. Zafar, M.S. Saif, Z. Ali, M. Nazar, M. Waqas, A.U. Haq, T. Tariq, S.G. Hassan, F. Iqbal, X.G. Shu and M. Hasan, J. Photochem. Photobiol. B, 204, 111784 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111784
References
S.E. Lohse and C.J. Murphy, J. Am. Chem. Soc., 134, 15607 (2012); https://doi.org/10.1021/ja307589n
E. Da Silva, W. Dayoub, N. Duguet, E. Métay, F. Popowycz and M. Lemaire, C.R. Chim., 16, 343 (2013); https://doi.org/10.1016/j.crci.2012.12.019
A. Husen and K.S. Siddiqi, Nanoscale Res. Lett., 9, 229 (2014); https://doi.org/10.1186/1556-276X-9 229
N. Sarwar, U.B. Humayoun, M. Kumar, S.F. Zaidi, J.H. Yoo, N. Ali, D.I. Jeong, J.H. Lee and D.H. Yoon, J. Clean. Prod., 292, 125974 (2021); https://doi.org/10.1016/j.jclepro.2021.125974
A.U. Khan, Y. Wei, A. Ahmad, Z.U. Haq Khan, K. Tahir, S.U. Khan, N. Muhammad, F.U. Khan and Q. Yuan, J. Mol. Liq., 215, 39 (2016); https://doi.org/10.1016/j.molliq.2015.12.019
I. Khan, K. Saeed and I. Khan, Arab. J. Chem., 12, 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
Q. Yue, Y. Zhang, Y. Jiang, J. Li, H. Zhang, C. Yu, A.A. Elzatahry, A. Alghamdi, Y. Deng and D. Zhao, J. Am. Chem. Soc., 139, 4954 (2017); https://doi.org/10.1021/jacs.7b01464
K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart, J. Liu, C. Majidi, R.S. Ruoff, P.S. Weiss and M.D. Dickey, ACS Nano, 13, 7388 (2019); https://doi.org/10.1021/acsnano.9b04843
G.A. Somorjai, F. Tao and J.Y. Park, Top. Catal., 47, 1 (2008); https://doi.org/10.1007/s11244-007-9028-1
T.J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook and S.T. Pantelides, Nano Lett., 12, 3038 (2012); https://doi.org/10.1021/nl3008727
V. Armendariz, I. Herrera, J.R. Peralta-Videa, M. Jose-Yacaman, H. Troiani, P. Santiago and J.L. Gardea-Torresdey, J. Nanopart. Res., 6, 377 (2004); https://doi.org/10.1007/s11051-004-0741-4
A. Singh, R. Pasricha and M. Sastry, Analyst, 137, 3083 (2012); https://doi.org/10.1039/c2an35162e
S. Lin, H.R. Mackey, T. Hao, G. Guo, M.C. van Loosdrecht and G. Chen, Water Res., 143, 399 (2018); https://doi.org/10.1016/j.watres.2018.06.051
Q.H. Tran, V.Q. Nguyen and A.T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9, 049501 (2018); https://doi.org/10.1088/2043-6254/aad12b
M. Darroudi, M.B. Ahmad, R. Zamiri, A.K. Zak, A.H. Abdullah and N.A. Ibrahim, Int. J. Nanomedicine, 6, 677 (2011); https://doi.org/10.2147/IJN.S17669
S.V. Kuchibhatla, A.S. Karakoti, D.R. Baer, S. Samudrala, M.H. Engelhard, J.E. Amonette, S. Thevuthasan and S. Seal, J. Phys. Chem. C, 116, 14108 (2012); https://doi.org/10.1021/jp300725s
K.L. Garner and A.A. Keller, J. Nanopart. Res., 16, 2503 (2014); https://doi.org/10.1007/s11051-014-2503-2
V. Sarathy, P.G. Tratnyek, J.T. Nurmi, D.R. Baer, J.E. Amonette, C.L. Chun, R.L. Penn and E.J. Reardon, J. Phys. Chem. C, 112, 2286 (2008); https://doi.org/10.1021/jp0777418
Y. Park, Y.N. Hong, A. Weyers, Y.S. Kim and R.J. Linhardt, IET Nanobiotechnol., 5, 69 (2011); https://doi.org/10.1049/iet-nbt.2010.0033
R.G. Haverkamp, A.T. Marshall and D. van Agterveld, J. Nanopart. Res., 9, 697 (2007); https://doi.org/10.1007/s11051-006-9198-y
P. Singh, Y.J. Kim, D. Zhang and D.C. Yang, Trends Biotechnol., 34, 588 (2016); https://doi.org/10.1016/j.tibtech.2016.02.006
D. Hao, Y. Xu, M. Zhao, J. Ma, Y. Wei and X. Wang, J. Photochem. Photobiol., 202, 111674 (2020); https://doi.org/10.1016/j.jphotobiol.2019.111674
N. Krithiga, A. Rajalakshmi and A. Jayachitra, J. Nanosci., 2015, 928204 (2015); https://doi.org/10.1155/2015/928204
I.R. Bunghez, M.E. Barbinta Patrascu, N.M. Badea, S.M. Doncea, A. Popescu and R.M. Ion, J. Optoelectron. Adv. Mater., 14, 1016 (2012).
S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
S. Iravani and B. Zolfaghari, BioMed Res. Int., 2013, 639725 (2013); https://doi.org/10.1155/2013/639725
M. Prathap, A. Alagesan and B.D. Ranjitha Kumari, J. Nanostruct. Chem., 4, 106 (2014); https://doi.org/10.1007/s40097-014-0106-1
S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152
M. Safaepour, A.R. Shahverdi, H.R. Shahverdi, M.R. Khorramizadeh and A.R. Gohari, Avicenna J. Med. Biotechnol., 1, 111 (2009).
J. Kesharwani, K.Y. Yoon, J. Hwang and M. Rai, J. Bionanosci., 3, 39 (2009); https://doi.org/10.1166/jbns.2009.1008
S. Ghosh, S. Patil, M. Ahire, R. Kitture, S. Kale, K. Pardesi, S.S. Cameotra, J. Bellare, D.D. Dhavale, A. Jabgunde and B.A. Chopade, Int. J. Nanomedicine, 7, 483 (2012); https://doi.org/10.2147/IJN.S24793
M. Wypij, J. Czarnecka, M. Swiecimska, H. Dahm, M. Rai and P. Golinska, World J. Microbiol. Biotechnol., 34, 23 (2018); https://doi.org/10.1007/s11274-017-2406-3
S. Jebril, R.K. Ben Jenana and C. Dridi, Mater. Chem. Phys., 248, 122898 (2020); https://doi.org/10.1016/j.matchemphys.2020.122898
G. Rajakumar and A. Abdul Rahuman, Acta Trop., 118, 196 (2011); https://doi.org/10.1016/j.actatropica.2011.03.003
K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy and J. Musarrat, PLoS One, 10, e0131178 (2015); https://doi.org/10.1371/journal.pone.0131178
R. Prasad and V.S. Swamy, J. Nanomater., 2013, 431218 (2013); https://doi.org/10.1155/2013/431218
P. Tippayawat, N. Phromviyo, P. Boueroy and A. Chompoosor, PeerJ, 4, e2589 (2016); https://doi.org/10.7717/peerj.2589
G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma and R.P. Singh, J. Nanopart. Res., 13, 2981 (2011); https://doi.org/10.1007/s11051-010-0193-y
M.Z. Khan, F.K. Tarek, M. Nuzat, M.A. Momin and M.R. Hasan, J. Nanosci., 2017, 1693416 (2017); https://doi.org/10.1155/2017/1693416
P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
H.M. Ibrahim, J. Radiat. Res. Appl. Sci., 8, 265 (2015); https://doi.org/10.1016/j.jrras.2015.01.007
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104
A. Chahardoli, N. Karimi and A. Fattahi, Iran. J. Pharm. Res., 16, 1167 (2017).
S.S. Shankar, A. Ahmad, R. Pasricha and M. Sastry, J. Mater. Chem., 13, 1822 (2003); https://doi.org/10.1039/b303808b
S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003
D. Raghunandan, B. Ravishankar, G. Sharanbasava, D.B. Mahesh, V. Harsoor, M.S. Yalagatti, M. Bhagawanraju and A. Venkataraman, Cancer Nanotechnol., 2, 57 (2011); https://doi.org/10.1007/s12645-011-0014-8
U.K. Parida, B.K. Bindhani and P. Nayak, World J. Nano Sci. Eng., 1, 93 (2011); https://doi.org/10.4236/wjnse.2011.14015
J. Kasthuri, K. Kathiravan and N. Rajendiran, J. Nanopart. Res., 11, 1075 (2009); https://doi.org/10.1007/s11051-008-9494-9
K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
K.M. Kumar, B.K. Mandal, M. Sinha and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 86, 490 (2012); https://doi.org/10.1016/j.saa.2011.11.001
Q. Liu, H. Liu, Z. Yuan, D. Wei and Y. Ye, Colloids Surf. Biointerfaces, 92, 348 (2012); https://doi.org/10.1016/j.colsurfb.2011.12.007
P. Daisy and K. Saipriya, Int. J. Nanomedicine, 7, 1189 (2012); https://doi.org/10.2147/IJN.S26650
L. Castro, M.L. Blázquez, J.A. Muñoz, F. González, C. García-Balboa and A. Ballester, Process Biochem., 46, 1076 (2011); https://doi.org/10.1016/j.procbio.2011.01.025
J. Anuradha, T. Abbasi and S.A. Abbasi, Res. J. Biotechnol., 5, 75 (2010).
S. Medda, A. Hajra, U. Dey, P. Bose and N.K. Mondal, Appl. Nanosci., 5, 875 (2015); https://doi.org/10.1007/s13204-014-0387-1
S.K. Boruah, P.K. Boruah, P. Sarma, C. Medhi and O.K. Medhi, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
S. Küünal, P. Rauwel and E. Rauwel, Emerg. Appl. Nanopart. Archit. Nanostruct., 411 (2018); https://doi.org/10.1016/B978-0-323-51254-1.00014-2
A.D. Dwivedi and K. Gopal, Colloids Surf. A Physicochem. Eng. Asp., 369, 27 (2010); https://doi.org/10.1016/j.colsurfa.2010.07.020
S.P. Dubey, M. Lahtinen and M. Sillanpää, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024
D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 374 (2009); https://doi.org/10.1016/j.saa.2009.02.037
G. Zhan, J. Huang, L. Lin, W. Lin, K. Emmanuel and Q. Li, J. Nanopart. Res., 13, 4957 (2011); https://doi.org/10.1007/s11051-011-0476-y
R. Mata, J.R. Nakkala and S.R. Sadras, Colloids Surf. Biointerfaces, 143, 499 (2016); https://doi.org/10.1016/j.colsurfb.2016.03.069
F.A.A. Rajathi, R. Arumugam, S. Saravanan and P. Anantharaman, J. Photochem. Photobiol., 135, 75 (2014); https://doi.org/10.1016/j.jphotobiol.2014.03.016
T. Abbasi, J. Anuradha, S.U. Ganaie and S.A. Abbasi, J. King Saud Univ. Sci., 27, 15 (2015); https://doi.org/10.1016/j.jksus.2014.04.001
M.F. Zayed and W.H. Eisa, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 238 (2014); https://doi.org/10.1016/j.saa.2013.10.092
J. Das and P. Velusamy, J. Taiwan Inst. Chem. Eng., 45, 2280 (2014); https://doi.org/10.1016/j.jtice.2014.04.005
K. Mapala and M. Pattabi, NanoWorld J., 3, 44 (2017); https://doi.org/10.17756/nwj.2017-045
A. Dzimitrowicz, P. Jamróz, G.C. diCenzo, I. Sergiel, T. Kozlecki and P. Pohl, Arab. J. Chem., 12, 4118 (2019); https://doi.org/10.1016/j.arabjc.2016.04.004
M.V. Sujitha and S. Kannan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 102, 15 (2013); https://doi.org/10.1016/j.saa.2012.09.042
A.A. Zahir, I.S. Chauhan, A. Bagavan, C. Kamaraj, G. Elango, J. Shankar, N. Arjaria, M. Roopan, A.A. Rahuman and N. Singh, Antimicrob. Agents Chemother., 59, 4782 (2015); https://doi.org/10.1128/AAC.00098-15
M. Nasrollahzadeh and S.M. Sajadi, J. Colloid Interface Sci., 457, 141 (2015); https://doi.org/10.1016/j.jcis.2015.07.004
G. Elango and S.M. Roopan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 139, 367 (2015); https://doi.org/10.1016/j.saa.2014.12.066
A. Kalaiselvi, S.M. Roopan, G. Madhumitha, C. Ramalingam and G. Elango, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 116 (2015); https://doi.org/10.1016/j.saa.2014.07.010
G.J. Zhou, S.H. Li, Y.C. Zhang and Y.Z. Fu, J. Nanosci. Nanotechnol., 14, 4437 (2014); https://doi.org/10.1166/jnn.2014.8259
D. Suresh, R.M. Shobharani, P.C. Nethravathi, M.A. Pavan Kumar, H. Nagabhushana and S.C. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 141, 128 (2015); https://doi.org/10.1016/j.saa.2015.01.048
S. Shende, A.P. Ingle, A. Gade and M. Rai, World J. Microbiol. Biotechnol., 31, 865 (2015); https://doi.org/10.1007/s11274-015-1840-3
T. Naseem and M.A. Farrukh, J. Chem., 2015, 912342 (2015); https://doi.org/10.1155/2015/912342
S.K. Dorcheh and K. Vahabi, Eds.: J. Mérillon and K. Ramawat, Biosynthesis of Nanoparticles by Fungi: Large-Scale Production, In: Fungal Metabolites, Springer: Switzerland, pp. 395-414 (2016).
A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1
C.L. Keat, A. Aziz, A.M. Eid and N.A. Elmarzugi, Bioresour. Bioprocess., 2, 47 (2015); https://doi.org/10.1186/s40643-015-0076-2
D. Scott, M. Toney and M. Muzikár, J. Am. Chem. Soc., 130, 865 (2008); https://doi.org/10.1021/ja074660g
P. Khandel and S.K. Shahi, J. Nanostructure Chem., 8, 369 (2018); https://doi.org/10.1007/s40097-018-0285-2
N. Marooufpour, M. Alizadeh, M. Hatami and B.A. Lajayer, Eds.: R. Prasad, Biological Synthesis of Nanoparticles by Different Groups of Bacteria, In: Microbial Nanobionics, Springer, Cham., pp 63-85 (2019); https://doi.org/10.1007/978-3-030-16383-9_3
S. Hasan, Res. J. Recent Sci., 4, 1 (2015).
J. Saxena, M.M. Sharma, S. Gupta and A. Singh, World J. Pharm. Sci., 3, 1586 (2014).
X. Li, H. Xu, Z.S. Chen and G. Chen, J. Nanomater., 2011, 270974 (2011); https://doi.org/10.1155/2011/270974
N. Pantidos and L.E. Horsfall, J. Nanomed. Nanotechnol., 5, 233 (2014); https://doi.org/10.4172/2157 7439.1000233
P. Rauwel, E. Raüwal, S. Ferdov and M.P. Singh, Adv. Mater. Sci. Eng., 2015, 624394 (2015); https://doi.org/10.1155/2015/624394
R. Chaudhary, K. Nawaz, A.K. Khan, C. Hano, B.H. Abbasi and S. Anjum, Biomolecules, 10, 1498 (2020); https://doi.org/10.3390/biom10111498
M. Mahdieh, A. Zolanvari, A.S. Azimee and M. Mahdieh, Sci. Iran., 19, 926 (2012); https://doi.org/10.1016/j.scient.2012.01.010
S. Menon, S. Rajeshkumar and V. Kumar, Res.-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
E. Maine, P.H. Soh and N. Dos Santos, Technovation, 39-40, 53 (2015); https://doi.org/10.1016/j.technovation.2014.02.007
A. Loureiro, N. G. Azoia, A. C. Gomes and A. Cavaco-Paulo, Curr. Pharm. Des., 22, 1371 (2016); https://doi.org/10.2174/1381612822666160125114900
P. Golinska, M. Wypij, A.P. Ingle, I. Gupta, H. Dahm and M. Rai, Appl. Microbiol. Biotechnol., 98, 8083 (2014); https://doi.org/10.1007/s00253-014-5953-7
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. LopezMachado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia and E.B. Souto, Nanomaterials, 10, 292 (2020); https://doi.org/10.3390/nano10020292
J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.-S. Lee, D.H. Jeong and M.-H. Cho, Nanomedicine, 3, 95 (2007); https://doi.org/10.1016/j.nano.2006.12.001
S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary and K. Srinivasan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 594 (2011); https://doi.org/10.1016/j.saa.2011.03.040
P. Logeswari, S. Silambarasan and J. Abraham, J. Saudi Chem. Soc., 19, 311 (2015); https://doi.org/10.1016/j.jscs.2012.04.007
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomedicine, 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347
O. Mahapatra, M. Bhagat, C. Gopalakrishnan and K.D. Arunachalam, J. Exp. Nanosci., 3, 185 (2008); https://doi.org/10.1080/17458080802395460
C. Marambio-Jones and E.M. Hoek, J. Nanopart. Res., 12, 1531 (2010); https://doi.org/10.1007/s11051-010-9900-y
K.V. Reichelt, P. Hoffmann-Lücke, B. Hartmann, B. Weber, J.P. Ley, G.E. Krammer, K.M. Swanepoel and K.-H. Engel, S. Afr. J. Bot., 83, 1 (2012); https://doi.org/10.1016/j.sajb.2012.07.006
M.S. Akhtar, J. Panwar and Y.S. Yun, ACS Sustain. Chem.& Eng., 1, 591 (2013); https://doi.org/10.1021/sc300118u
A. Andleeb, A. Andleeb, S. Asghar, G. Zaman, M. Tariq, A. Mehmood, M. Nadeem, C. Hano, J.M. Lorenzo and B.H. Abbasi, Cancers, 13, 2818 (2021); https://doi.org/10.3390/cancers13112818
V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann and R. Schnettler, Biomaterials, 25, 4383 (2004); https://doi.org/10.1016/j.biomaterials.2003.10.078
C. Dipankar and S. Murugan, Colloids Surf. Biointerfaces, 98, 112 (2012); https://doi.org/10.1016/j.colsurfb.2012.04.006
T.Y. Suman, S.R. Radhika Rajasree, A. Kanchana and S.B. Elizabeth, Colloids Surf. Biointerfaces, 106, 74 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.037
O. Lushchak, A. Zayachkivska and A. Vaiserman, Oxid. Med. Cellular Long., 2018, 3407375 (2018); https://doi.org/10.1155/2018/3407375
L. Swarnalatha and P.N. Reddy, Asian Pac. J. Trop. Biomed., 2, 1900 (2012); https://doi.org/10.1016/S2221-1691(12)60518-8
H.H. Lara, N.V. Ayala-Nuñez, L. Ixtepan-Turrent and C. RodriguezPadilla, J. Nanobiotechnol., 8, 1 (2010); https://doi.org/10.1186/1477-3155-8-1
U. Suriyakalaa, J.J. Antony, S. Suganya, D. Siva, S. Kamalakkannan, R. Sukirtha, P.T. Pichiah and S. Achiraman, Colloids Surf. Biointerfaces, 102, 189 (2013); https://doi.org/10.1016/j.colsurfb.2012.06.039
R.W. Sun, R. Chen, N.P. Chung, C.M. Ho, C.L. Lin and C.M. Che, Chem. Commun., 5059 (2005); https://doi.org/10.1039/b510984a
S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito and T. Yoshikawa, Nanomedicine, 6, 570 (2010); https://doi.org/10.1016/j.nano.2009.12.002
A. Asaikkutti, P.S. Bhavan, K. Vimala. P. Cheruparambath and M. Karthik, J. Trace Elem. Med. Biol., 35, 7 (2016); https://doi.org/10.1016/j.jtemb.2016.01.005
J. Weiss, P. Takhistov and D.J. McClements, J. Food Sci., 71, 107 (2006); https://doi.org/10.1111/j.1750-3841.2006.00195.x
S. Ahmad, I. Tauseef, K.S. Haleem, K. Khan, M. Shahzad, M. Ali and F. Sultan, Appl. Nanosci., 10, 4459 (2019); https://doi.org/10.1007/s13204-019-01221-z
R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
J. Wang, W.D. Zhang, W.X. Ouyang and Y.X. Yu, Mater. Lett., 154, 44 (2015); https://doi.org/10.1016/j.matlet.2015.04.048
S.A. Moon, B.K. Salunke, B. Alkotaini, E. Sathiyamoorthi and B.S. Kim, IET Nanobiotechnol., 9, 220 (2015); https://doi.org/10.1049/iet-nbt.2014.0051
S. Qasim, A. Zafar, M.S. Saif, Z. Ali, M. Nazar, M. Waqas, A.U. Haq, T. Tariq, S.G. Hassan, F. Iqbal, X.G. Shu and M. Hasan, J. Photochem. Photobiol. B, 204, 111784 (2020); https://doi.org/10.1016/j.jphotobiol.2020.111784