Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Mineralization Kinetics of Metformin
Corresponding Author(s) : H.R. Ghatak
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Present work analyzes the kinetic study of mineralization during electro-oxidation on Ti/DSA (Ta2O5-Ir2O5) and combined electro-oxidation and electro-coagulation on stainless steel anode of an antidiabetic drug metformin hydrochloride (MET-HCl) in synthetic wastewater over a specific charge. Four different reaction orders (0.5, 1, 1.5 and 2) were tested using the integral analysis method by plotting TOC concentration terms over specific charges to determine the exact rate kinetics for the mineralization. The effect of applied current density was evaluated at 50 ppm of sodium sulphate as supporting electrolyte, and the effect of supporting electrolyte concentration was also assessed at a current density of 0.93 mA/cm2 in 50 ppm MET-HCl solution. As a result of (i) electro-oxidation experiments on MET-HCl, carried out on Ti/DSA anode, and (ii) combined electro-oxidation and electro-coagulation experiments carried out on stainless steel anode, based on the R-squared value of the mineralization curves, the first-order reaction rate was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Viollet, B. Guigas, N.S. Garcia, J. Leclerc, M. Foretz and F. Andreelli, Clin. Sci., 122, 253 (2012); https://doi.org/10.1042/CS20110386
- C. Orona-Navar, R. Garcia-Morales, R. Rubio-Govea, J. Mahlknecht, R.I. Hernandez-Aranda, J.G. Ramirez, K.D.P. Nigam and N. Ornelas-Soto, J. Environ. Chem. Eng., 6, 5332 (2018); https://doi.org/10.1016/j.jece.2018.08.010
- M. Scheurer, A. Michel, H.J. Brauch, W. Ruck and F. Sacher, Water Res., 46, 4790 (2012); https://doi.org/10.1016/j.watres.2012.06.019
- M. Oosterhuis, F. Sacher and T.L. ter Laak, Sci. Total Environ., 442, 380 (2013); https://doi.org/10.1016/j.scitotenv.2012.10.046
- C. Trautwein, J.D. Berset, H. Wolschke and K. Kümmerer, Environ. Int., 70, 203 (2014); https://doi.org/10.1016/j.envint.2014.05.008
- A.J. Ghoshdastidar, S. Fox and A.Z. Tong, Environ. Sci. Pollut. Res. Int., 22, 689 (2015); https://doi.org/10.1007/s11356-014-3400-z
- N.J. Niemuth and R.D. Klaper, Chemosphere, 135, 38 (2015); https://doi.org/10.1016/j.chemosphere.2015.03.060
- M.J. Benotti and B.J. Brownawell, Environ. Sci. Technol., 41, 5795 (2007); https://doi.org/10.1021/es0629965
- J.D. Cahill, E.T. Furlong, M.R. Burkhardt, D. Kolpin and L.G. Anderson, J. Chromatogr. A, 1041, 171 (2004); https://doi.org/10.1016/j.chroma.2004.04.005
- J. Bones, K. Thomas, P.N. Nesterenko and B. Paull, Talanta, 70, 1117 (2006); https://doi.org/10.1016/j.talanta.2006.02.026
- M.C. Dodd, H.-P.E. Kohler and U. von Gunten, Environ. Sci. Technol., 43, 2498 (2009); https://doi.org/10.1021/es8025424
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
- J. Jeong and J. Lee, Sep. Purif. Technol., 84, 35 (2012); https://doi.org/10.1016/j.seppur.2011.09.033
- H.R. Ghatak, Environ. Technol., 35, 2483 (2014); https://doi.org/10.1080/09593330.2014.911357
- H.R. Ghatak, Int. J. Hydrogen Energy, 45, 31466 (2020); https://doi.org/10.1016/j.ijhydene.2020.08.161
- E.A. Bashiz and H. Sayyaf, J. Mol. Liq., 300, 112285 (2020); https://doi.org/10.1016/j.molliq.2019.112285
References
B. Viollet, B. Guigas, N.S. Garcia, J. Leclerc, M. Foretz and F. Andreelli, Clin. Sci., 122, 253 (2012); https://doi.org/10.1042/CS20110386
C. Orona-Navar, R. Garcia-Morales, R. Rubio-Govea, J. Mahlknecht, R.I. Hernandez-Aranda, J.G. Ramirez, K.D.P. Nigam and N. Ornelas-Soto, J. Environ. Chem. Eng., 6, 5332 (2018); https://doi.org/10.1016/j.jece.2018.08.010
M. Scheurer, A. Michel, H.J. Brauch, W. Ruck and F. Sacher, Water Res., 46, 4790 (2012); https://doi.org/10.1016/j.watres.2012.06.019
M. Oosterhuis, F. Sacher and T.L. ter Laak, Sci. Total Environ., 442, 380 (2013); https://doi.org/10.1016/j.scitotenv.2012.10.046
C. Trautwein, J.D. Berset, H. Wolschke and K. Kümmerer, Environ. Int., 70, 203 (2014); https://doi.org/10.1016/j.envint.2014.05.008
A.J. Ghoshdastidar, S. Fox and A.Z. Tong, Environ. Sci. Pollut. Res. Int., 22, 689 (2015); https://doi.org/10.1007/s11356-014-3400-z
N.J. Niemuth and R.D. Klaper, Chemosphere, 135, 38 (2015); https://doi.org/10.1016/j.chemosphere.2015.03.060
M.J. Benotti and B.J. Brownawell, Environ. Sci. Technol., 41, 5795 (2007); https://doi.org/10.1021/es0629965
J.D. Cahill, E.T. Furlong, M.R. Burkhardt, D. Kolpin and L.G. Anderson, J. Chromatogr. A, 1041, 171 (2004); https://doi.org/10.1016/j.chroma.2004.04.005
J. Bones, K. Thomas, P.N. Nesterenko and B. Paull, Talanta, 70, 1117 (2006); https://doi.org/10.1016/j.talanta.2006.02.026
M.C. Dodd, H.-P.E. Kohler and U. von Gunten, Environ. Sci. Technol., 43, 2498 (2009); https://doi.org/10.1021/es8025424
M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari and D.D. Dionysiou, Appl. Catal. B, 125, 331 (2012); https://doi.org/10.1016/j.apcatb.2012.05.036
J. Jeong and J. Lee, Sep. Purif. Technol., 84, 35 (2012); https://doi.org/10.1016/j.seppur.2011.09.033
H.R. Ghatak, Environ. Technol., 35, 2483 (2014); https://doi.org/10.1080/09593330.2014.911357
H.R. Ghatak, Int. J. Hydrogen Energy, 45, 31466 (2020); https://doi.org/10.1016/j.ijhydene.2020.08.161
E.A. Bashiz and H. Sayyaf, J. Mol. Liq., 300, 112285 (2020); https://doi.org/10.1016/j.molliq.2019.112285