Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth Mechanism, Structural and Photoelectrochemical Study of Zinc Tellurium Thin Film
Corresponding Author(s) : Kisan C. Rathod
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Chalcogenides II-VI group of crystalline material zinc tellurium thin films have been synthesized by chemical bath deposition (CBD) method in which glass substrates have been used for deposition technique in presence of triethanolamine solution. The as-synthesized films were characterization by X-ray diffraction scanning electron microscopy (XRD), optical spectroscopy and thermoelectric techniques. The deposited material was orthorhombic in shape. The 2.01 eV is the optical band gap energy of the sample and the electrical conductivity of the thin film was originating in the order of 10-8 (Ω cm)-1, which showed n-type thermoelectrical conductivity. The solar cell can be represented as a n-ZnTe|NaI (0.1M) + I2 (0.1M)|C(graphite). The solar efficiency of the cell was found to be 1.03%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.A. Younus, A.M. Ezzat and M.M. Uonis, J. Nanocomposites, 6, 165 (2020); https://doi.org/10.1080/20550324.2020.1865712
- H. Singh, M. Singh, J.S. Singh, B. Bansod, T. Singh, A. Thakur, M.F. Wani and J. Sharma, J. Mater. Sci: Mater. Elect., 30, 3504 (2019); https://doi.org/10.1007/s10854-018-00627-9
- H. Bellakhder, A. Outzourhit and E.L. Ameziane, Thin Solid Films, 382, 30 (2001); https://doi.org/10.1016/S0040-6090(00)01697-7
- O. Toma, L. Ion, M. Girtan and S. Antohe, Sol. Energy, 108, 51 (2014); https://doi.org/10.1016/j.solener.2014.06.031
- H. Singh, P. Singh, A. Thakur, T. Singh and J. Sharma, J. Mater. Sci. Semicond. Process., 75, 276 (2018); https://doi.org/10.1016/j.mssp.2017.12.002
- H. Singh, M. Singh, J. Singh, B.S. Bansod, T. Singh, A. Thakur, M.F. Wani and J. Sharma, J. Mater. Sci. Mater. Electron., 30, 3504 (2019); https://doi.org/10.1007/s10854-018-00627-9
- M. Abbas, N.A. Shah, K. Jehangir, M. Fareed and A. Zaid, Mater. Sci. Poland, 36, 364 (2018); https://doi.org/10.1515/msp-2018-0036
- O.O. Abegund, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
- R.D. Gould, S. Kasap and A.K. Ray, Handbook of Electric and Photonic Materials, Springer International Publishing AG: Germany (2017).
- A.M. Salem, T.M. Dahya and Y.A.El-Gendy, Physica B, 403, 3027 (2008); https://doi.org/10.1016/j.physb.2008.03.005
- Y.-T. Huang, S.R. Kavanagh, D.O. Scanlon, A. Walsh and R.L.Z. Hoye, Nanotechnology, 32, 132004 (2021); https://doi.org/10.1088/1361-6528/abcf6d
- W. Promnopas, T. Thongtem and S. Thongtem, J. Nanomater., 2014, 529629 (2014); https://doi.org/10.1155/2014/529629
- K.M. Rehman, X. Liu, M. Riaz, Y. Yang, S. Feng, M.W. Khan, A. Ahmad, M. Shezad, Z. Wazir, Z.Ali, K.M. Batoog, S.F. Adil, M. Khan and E.H. Raslani, Physica B, 560, 204 (2019); https://doi.org/10.1016/j.physb.2019.02.043
- O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf and I.M. Dharmadasa, Curr. Appl. Phys., 16, 120 (2016); https://doi.org/10.1016/j.cap.2015.11.008
- T. Kim, Y. Kim, I. Lee, D. Lee and H. Sohn, Nanotechnology, 30, 13LT01 (2019); https://doi.org/10.1088/1361-6528/aafe13
- T. Nakasu, W. Sun, M. Kobayashi and T. Asahi, J. Cryst. Growth, 468, 635 (2017); https://doi.org/10.1016/j.jcrysgro.2016.11.035
- T. Tanaka, H. Ohshita, K. Saito and Q. Guo, Superlatt. Microstruct., 114, 192 (2018); https://doi.org/10.1016/j.spmi.2017.12.034
- A. Mondal, S. Chaudhuri and A. K. Pal, Appl. Phys. A, 43, 81 (1987); https://doi.org/10.1007/BF00615211
- B. Ghosh, D. Ghosh, S. Hussain, R. Bhar and A.K. Pal, J. Alloys Compd., 541, 104 (2012); https://doi.org/10.1016/j.jallcom.2012.06.063
- P.P. Hankare, P.A. Chate, S.D. Delekar, M.R. Asabe and I.S. Mulla, J. Phys. Chem. Solids, 67, 2310 (2006); https://doi.org/10.1016/j.jpcs.2006.05.001
- C. Lincheneau, M. Oszajca, M. Amelia, M. Baroncini, S. Silvi, K. Szacilowski and A. Credi, RSC Adv., 4, 29848 (2014); https://doi.org/10.1039/C4RA03259D
- D.C. Sharma, Y.K. Vijay, Y.K. Sharma and S. Srivastava, Adv. Mater. Lett., 4, 68 (2013); https://doi.org/10.5185/amlett.2013.icnano.118
- S.S. Kale, R.S. Mane, H.M. Pathan, A.V. Shaikh, O.-S. Joo and S.-H. Han, Appl. Surf. Sci., 253, 4335 (2007); https://doi.org/10.1016/j.apsusc.2006.09.043
- A.M. Aboraia, M. Ahmad, E.A. Abdel Wahab, H.S. Hassan and E.R. Shaaban, Int. J. New Horiz. Phys., 2, 11 (2015); https://doi.org/10.12785/ijnhp/020103
- T. Potlog, N. Maticiuc, A. Mirzac, P. Dumitriu and D. Scortescu, CAS 2012 (International Semiconductor Conference), 2, 321 (2012); https://doi.org/10.1109/SMICND.2012.6400772
- A. Cottrell, An Introducing to Metallurgy, Arnold: London, p. 173 (1975).
- M.M. Uonis, B.M. Mustufa and A.M. Ezzat, World J. Nano. Sci. Eng., 4, 49518 (2014); https://doi.org/10.4236/wjnse.2014.43014
- A.M. Ezzat, B.M. Mostafa and M.M. Younis, Int. J. Sci. Technol., 9, 72 (2014); https://doi.org/10.12816/0010141
- Z. Li, J. Salfi, C. De Souza, P. Sun, S.V. Nair and H.E. Ruda, Appl. Phys. Lett., 97, 063510 (2010); https://doi.org/10.1063/1.3478555
- V.B. Patil, D.S. Satraves, G.S. Shahane and L.P. Deshumkh, Thin Solid Films, 401, 35 (2001); https://doi.org/10.1016/S0040-6090(01)01480-8
References
I.A. Younus, A.M. Ezzat and M.M. Uonis, J. Nanocomposites, 6, 165 (2020); https://doi.org/10.1080/20550324.2020.1865712
H. Singh, M. Singh, J.S. Singh, B. Bansod, T. Singh, A. Thakur, M.F. Wani and J. Sharma, J. Mater. Sci: Mater. Elect., 30, 3504 (2019); https://doi.org/10.1007/s10854-018-00627-9
H. Bellakhder, A. Outzourhit and E.L. Ameziane, Thin Solid Films, 382, 30 (2001); https://doi.org/10.1016/S0040-6090(00)01697-7
O. Toma, L. Ion, M. Girtan and S. Antohe, Sol. Energy, 108, 51 (2014); https://doi.org/10.1016/j.solener.2014.06.031
H. Singh, P. Singh, A. Thakur, T. Singh and J. Sharma, J. Mater. Sci. Semicond. Process., 75, 276 (2018); https://doi.org/10.1016/j.mssp.2017.12.002
H. Singh, M. Singh, J. Singh, B.S. Bansod, T. Singh, A. Thakur, M.F. Wani and J. Sharma, J. Mater. Sci. Mater. Electron., 30, 3504 (2019); https://doi.org/10.1007/s10854-018-00627-9
M. Abbas, N.A. Shah, K. Jehangir, M. Fareed and A. Zaid, Mater. Sci. Poland, 36, 364 (2018); https://doi.org/10.1515/msp-2018-0036
O.O. Abegund, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
R.D. Gould, S. Kasap and A.K. Ray, Handbook of Electric and Photonic Materials, Springer International Publishing AG: Germany (2017).
A.M. Salem, T.M. Dahya and Y.A.El-Gendy, Physica B, 403, 3027 (2008); https://doi.org/10.1016/j.physb.2008.03.005
Y.-T. Huang, S.R. Kavanagh, D.O. Scanlon, A. Walsh and R.L.Z. Hoye, Nanotechnology, 32, 132004 (2021); https://doi.org/10.1088/1361-6528/abcf6d
W. Promnopas, T. Thongtem and S. Thongtem, J. Nanomater., 2014, 529629 (2014); https://doi.org/10.1155/2014/529629
K.M. Rehman, X. Liu, M. Riaz, Y. Yang, S. Feng, M.W. Khan, A. Ahmad, M. Shezad, Z. Wazir, Z.Ali, K.M. Batoog, S.F. Adil, M. Khan and E.H. Raslani, Physica B, 560, 204 (2019); https://doi.org/10.1016/j.physb.2019.02.043
O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf and I.M. Dharmadasa, Curr. Appl. Phys., 16, 120 (2016); https://doi.org/10.1016/j.cap.2015.11.008
T. Kim, Y. Kim, I. Lee, D. Lee and H. Sohn, Nanotechnology, 30, 13LT01 (2019); https://doi.org/10.1088/1361-6528/aafe13
T. Nakasu, W. Sun, M. Kobayashi and T. Asahi, J. Cryst. Growth, 468, 635 (2017); https://doi.org/10.1016/j.jcrysgro.2016.11.035
T. Tanaka, H. Ohshita, K. Saito and Q. Guo, Superlatt. Microstruct., 114, 192 (2018); https://doi.org/10.1016/j.spmi.2017.12.034
A. Mondal, S. Chaudhuri and A. K. Pal, Appl. Phys. A, 43, 81 (1987); https://doi.org/10.1007/BF00615211
B. Ghosh, D. Ghosh, S. Hussain, R. Bhar and A.K. Pal, J. Alloys Compd., 541, 104 (2012); https://doi.org/10.1016/j.jallcom.2012.06.063
P.P. Hankare, P.A. Chate, S.D. Delekar, M.R. Asabe and I.S. Mulla, J. Phys. Chem. Solids, 67, 2310 (2006); https://doi.org/10.1016/j.jpcs.2006.05.001
C. Lincheneau, M. Oszajca, M. Amelia, M. Baroncini, S. Silvi, K. Szacilowski and A. Credi, RSC Adv., 4, 29848 (2014); https://doi.org/10.1039/C4RA03259D
D.C. Sharma, Y.K. Vijay, Y.K. Sharma and S. Srivastava, Adv. Mater. Lett., 4, 68 (2013); https://doi.org/10.5185/amlett.2013.icnano.118
S.S. Kale, R.S. Mane, H.M. Pathan, A.V. Shaikh, O.-S. Joo and S.-H. Han, Appl. Surf. Sci., 253, 4335 (2007); https://doi.org/10.1016/j.apsusc.2006.09.043
A.M. Aboraia, M. Ahmad, E.A. Abdel Wahab, H.S. Hassan and E.R. Shaaban, Int. J. New Horiz. Phys., 2, 11 (2015); https://doi.org/10.12785/ijnhp/020103
T. Potlog, N. Maticiuc, A. Mirzac, P. Dumitriu and D. Scortescu, CAS 2012 (International Semiconductor Conference), 2, 321 (2012); https://doi.org/10.1109/SMICND.2012.6400772
A. Cottrell, An Introducing to Metallurgy, Arnold: London, p. 173 (1975).
M.M. Uonis, B.M. Mustufa and A.M. Ezzat, World J. Nano. Sci. Eng., 4, 49518 (2014); https://doi.org/10.4236/wjnse.2014.43014
A.M. Ezzat, B.M. Mostafa and M.M. Younis, Int. J. Sci. Technol., 9, 72 (2014); https://doi.org/10.12816/0010141
Z. Li, J. Salfi, C. De Souza, P. Sun, S.V. Nair and H.E. Ruda, Appl. Phys. Lett., 97, 063510 (2010); https://doi.org/10.1063/1.3478555
V.B. Patil, D.S. Satraves, G.S. Shahane and L.P. Deshumkh, Thin Solid Films, 401, 35 (2001); https://doi.org/10.1016/S0040-6090(01)01480-8