Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Rhodamine B Dye by Using Tin-Doped CeO2-Fe2O3 Nanocomposite
Corresponding Author(s) : V. Alwera
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Organic dyes are frequently used in various industries such as textiles, medicines, plastics, etc. and contribute as a major source of environmental pollutants, which leads to harmful effects on livings. Therefore, in this study, a Sn-doped CeO2-Fe2O3 photocatalyst was synthesized using the thermal decomposition method and applied for the effective degradation and removal of rhodamine B dye under solar irradiation. The as-synthesized catalyst was characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and UV-vis diffuse reflectance (UV-vis DRS) techniques. The particle size of the photocatalyst was found 1-2 μm with a high surface area. The band gap energies of the catalyst narrowed to 2.2 eV after the Sn doping. The doping of Sn4+ ions into CeO2 lattice leads to the enhanced photocatalytic activity of CeO2-Fe2O3 composite by modified the Fermi levels of catalyst. The catalyst has shown a fast degradation rate under solar irradiance and is able to perform complete degradation of rhodamine B dye. The photocatalyst showed the COD removal up to 96% from the dye solution. Further, the scavenger test revealed the active species hydroxyl (·OH) and superoxide (O2·-) radical are involved in the degradation of rhodamine B dye. The complete degradation of rhodamine B dye was studied and confirmed by high-performance liquid chromatography. A plausible mechanism is proposed for the degradation process and charge transfer during the degradation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Molla, M. Sahu and S. Hussain, J. Mater. Chem. A Mater. Energy Sustain., 3, 15616 (2015); https://doi.org/10.1039/C5TA02888D
- V.S. Talismanov, S.V. Popkov, O.G. Karmanova, S.S. Zykova, M.V. Shustov, L.A. Zhuravleva and N.G. Tokareva, Rasayan J. Chem., 14, 1711 (2021); http://doi.org/10.31788/RJC.2021.1436537
- K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini and M. Malik, Sci. Rep., 6, 38064 (2016); https://doi.org/10.1038/srep38064
- X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen and Y. Jiang, ACS Appl. Mater. Interfaces, 7, 15285 (2015); https://doi.org/10.1021/acsami.5b02649
- B. Viswanathan, CCAT, 7, 99 (2018); https://doi.org/10.2174/2211544707666171219161846
- G.V. Tsaplin, S.S. Grishin, E.P. Baberkina, S.V. Popkov, V.S. Talismanov, O.G. Karmanova and S.S Zykova, Rasayan J. Chem., 14, 1816 (2021); http://doi.org/10.31788/RJC.2021.1436574
- R. Singh, J. Civil Eng. Environ. Sci., 7, 8 (2021); https://doi.org/10.17352/2455-488X.000039
- H.A. Kiwaan, T.M. Atwee, E.A. Azab and A.A. El-Bindary, J. Mol. Struct., 1200, 127115 (2020); https://doi.org/10.1016/j.molstruc.2019.127115
- C.-Y. Chen, Water Air Soil Pollut., 202, 335 (2009); https://doi.org/10.1007/s11270-009-9980-4
- S. Luo, R. Wang, J. Yin, T. Jiao, K. Chen, G. Zou, L. Zhang, J. Zhou, L. Zhang and Q. Peng, ACS Omega, 4, 3946 (2019); https://doi.org/10.1021/acsomega.9b00231
- S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan and P. Zhang, RSC Adv., 8, 20277 (2018); https://doi.org/10.1039/C8RA03117G
- M. Umadevi, R. Rathinam, S. Poornima, T. Santhi and S. Pattabhi, Asian J. Chem., 33, 1919 (2021); https://doi.org/10.14233/ajchem.2021.23330
- R. Rathinam and M. Govindaraj, Nat. Environ. Pollut. Technol., 20, 1069 (2021); https://doi.org/10.46488/NEPT.2021.v20i03.014
- R. Singh, M. Singh, N. Kumari, S. Janak, S. Maharana and P. Maharana, J. Compos. Sci., 5, 162 (2021); https://doi.org/10.3390/jcs5060162
- R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
- T.M. Breault and B.M. Bartlett, J. Phys. Chem. C, 116, 5986 (2012); https://doi.org/10.1021/jp2078456
- Y.-H. Chiu, T.-F.M. Chang, C.-Y. Chen, M. Sone and Y.-J. Hsu, Catalysts, 9, 430 (2019); https://doi.org/10.3390/catal9050430
- R. Singh, Eds.: A. Patnaik, E. Kozeschnik, V. Kukshal, Advancements in Energy Storage through Graphene. In: Advances in Materials Processing and Manufacturing Applications. iCADMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore (2021).
- V. Alwera, S. Sehlangia and S. Alwera, Sep. Sci. Technol., 56, 2278 (2021); https://doi.org/10.1080/01496395.2020.1819826
- R. Singh, N. Kaur and M. Singh, Mater. Today Proc., 44, 242 (2021); https://doi.org/10.1016/j.matpr.2020.09.461
- R. Singh, A. Altaee and S. Gautam, Heliyon, 6, e04487 (2020); https://doi.org/10.1016/j.heliyon.2020.e04487
- R.S. Sabry, M.I. Rahmah and W.J. Aziz, J. Mater. Sci. Mater. Electron., 31, 13382 (2020); https://doi.org/10.1007/s10854-020-03893-8
- Z.N. Kayani, A. Usman, H. Nazli, R. Sagheer, S. Riaz and S. Naseem, Appl. Phys., A Mater. Sci. Process., 126, 559 (2020); https://doi.org/10.1007/s00339-020-03748-3
- D. Majumder, I. Chakraborty, K. Mandal and S. Roy, ACS Omega, 4, 4243 (2019); https://doi.org/10.1021/acsomega.8b03298
- D. Channei, A. Nakaruk, P. Jannoey and S. Phanichphant, Solid State Sci., 87, 9 (2019); https://doi.org/10.1016/j.solidstatesciences.2018.10.016
- Z.M. Yang, G.F. Huang, W.Q. Huang, J.M. Wei, X.G. Yan, Y.Y. Liu, C. Jiao, Z. Wan and A. Pan, J. Mater. Chem. A Mater. Energy Sustain., 2, 1750 (2014); https://doi.org/10.1039/C3TA14286H
- N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett and J. Chen, ACS Appl. Mater. Interfaces, 4, 3718 (2012); https://doi.org/10.1021/am300812n
- S. Hu, F. Zhou, L. Wang and J. Zhang, Catal. Commun., 12, 794 (2011); https://doi.org/10.1016/j.catcom.2011.01.027
- A. Krishnan, S. Beena and M. Chandran, Mater. Today Proc., 18, 4968 (2019); https://doi.org/10.1016/j.matpr.2019.07.489
- H. Liu, H.K. Shon, X. Sun, S. Vigneswaran and H. Nan, Appl. Surf. Sci., 257, 5813 (2011); https://doi.org/10.1016/j.apsusc.2011.01.110
- A.I. Ahmed S.M. Hassan and M.A. Mannaa, J. Sci.: Adv. Mater. Dev., 4, 400 (2019); https://doi.org/10.1016/j.jsamd.2019.06.004
- M. Sohail, N. Baig, M. Sher, R. Jamil, M. Altaf, S. Akhtar and M. Sharif, ACS Omega, 5, 6405 (2020); https://doi.org/10.1021/acsomega.9b03876
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 31, e3983 (2017); https://doi.org/10.1002/bmc.3983
- V. Alwera, S. Sehlangia and S. Alwera, J. Liq. Chromatogr. Rel. Technol., 43, 742 (2020); https://doi.org/10.1080/10826076.2020.1798250
- A. Krishnan and S.M. Aboobakar Shibli, Ind. Eng. Chem. Res., 57, 16217 (2018); https://doi.org/10.1021/acs.iecr.8b03692
- T.C. Bhagya, A. Krishnan, A.R. S, A.S. M, B.R. Sreelekshmy, P. Jineesh and S.M.A. Shibli, Photochem. Photobiol. Sci., 18, 1716 (2019); https://doi.org/10.1039/C9PP00119K
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1772 (2016); https://doi.org/10.1002/bmc.3752
- S. Alwera and R. Bhushan, J. Liq. Chromatogr. Rel. Technol., 40, 707 (2017); https://doi.org/10.1080/10826076.2017.1348954
- M.R. Abhilash, G. Akshatha and S. Srikantaswamy, RSC Adv., 9, 8557 (2019); https://doi.org/10.1039/C8RA09929D
- A. Krishnan, M.A. Sha, R. Basheer, A.H. Riyas and S.M.A. Shibli, Mater. Sci. Semicond. Process., 116, 105138 (2020); https://doi.org/10.1016/j.mssp.2020.105138
- J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu and Y. Qian, Eur. J. Inorg. Chem., 2010, 1172 (2010); https://doi.org/10.1002/ejic.200901116
- L.-C. Chen, Y.-J. Tu, Y.-S. Wang, R.-S. Kan and C.-M. Huang, J. Photochem. Photobiol. Chem., 199, 170 (2008); https://doi.org/10.1016/j.jphotochem.2008.05.022
- H. Lahmar, M. Benamira, S. Douafer, L. Messaadia, A. Boudjerda and M. Trari, Chem. Phys. Lett., 742, 137132 (2020); https://doi.org/10.1016/j.cplett.2020.137132
- V. Eskizeybek, F. Sari, H. Gülce, A. Gülce and A. Avci, Appl. Catal. B, 119-120, 197 (2012); https://doi.org/10.1016/j.apcatb.2012.02.034
- S. Prabhu, T. Viswanathan, K. Jothivenkatachalam and K. Jeganathan, Int. J. Mater. Sci., 2014, 536123 (2014); https://doi.org/10.1155/2014/536123
- A. Boughelout, R. Macaluso, M. Kechouane and M. Trari, React. Kinet. Mech. Catal., 129, 1115 (2020); https://doi.org/10.1007/s11144-020-01741-8
- H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park and A.C.K. Yip, Nano Res., 12, 955 (2019); https://doi.org/10.1007/s12274-019-2287-0
- V. Alwera, S. Singh, V.C. Srivastava and T.K. Mandal, ChemistrySelect, 5, 4674 (2020); https://doi.org/10.1002/slct.202000298
- S. Alwera, V. Alwera and S. Sehlangia, Biomed. Chromatogr., 34, e4943 (2020); https://doi.org/10.1002/bmc.4943
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1223 (2016); https://doi.org/10.1002/bmc.3671
- S. Alwera, ACS Sustain. Chem.& Eng., 6, 11653 (2018); https://doi.org/10.1021/acssuschemeng.8b01869
- J. Bandara, U. Klehm and J. Kiwi, Appl. Catal. B, 76, 73 (2007); https://doi.org/10.1016/j.apcatb.2007.05.007
- R. Zha, R. Nadimicherla and X. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 6565 (2015); https://doi.org/10.1039/C5TA00764J
References
A. Molla, M. Sahu and S. Hussain, J. Mater. Chem. A Mater. Energy Sustain., 3, 15616 (2015); https://doi.org/10.1039/C5TA02888D
V.S. Talismanov, S.V. Popkov, O.G. Karmanova, S.S. Zykova, M.V. Shustov, L.A. Zhuravleva and N.G. Tokareva, Rasayan J. Chem., 14, 1711 (2021); http://doi.org/10.31788/RJC.2021.1436537
K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini and M. Malik, Sci. Rep., 6, 38064 (2016); https://doi.org/10.1038/srep38064
X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen and Y. Jiang, ACS Appl. Mater. Interfaces, 7, 15285 (2015); https://doi.org/10.1021/acsami.5b02649
B. Viswanathan, CCAT, 7, 99 (2018); https://doi.org/10.2174/2211544707666171219161846
G.V. Tsaplin, S.S. Grishin, E.P. Baberkina, S.V. Popkov, V.S. Talismanov, O.G. Karmanova and S.S Zykova, Rasayan J. Chem., 14, 1816 (2021); http://doi.org/10.31788/RJC.2021.1436574
R. Singh, J. Civil Eng. Environ. Sci., 7, 8 (2021); https://doi.org/10.17352/2455-488X.000039
H.A. Kiwaan, T.M. Atwee, E.A. Azab and A.A. El-Bindary, J. Mol. Struct., 1200, 127115 (2020); https://doi.org/10.1016/j.molstruc.2019.127115
C.-Y. Chen, Water Air Soil Pollut., 202, 335 (2009); https://doi.org/10.1007/s11270-009-9980-4
S. Luo, R. Wang, J. Yin, T. Jiao, K. Chen, G. Zou, L. Zhang, J. Zhou, L. Zhang and Q. Peng, ACS Omega, 4, 3946 (2019); https://doi.org/10.1021/acsomega.9b00231
S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan and P. Zhang, RSC Adv., 8, 20277 (2018); https://doi.org/10.1039/C8RA03117G
M. Umadevi, R. Rathinam, S. Poornima, T. Santhi and S. Pattabhi, Asian J. Chem., 33, 1919 (2021); https://doi.org/10.14233/ajchem.2021.23330
R. Rathinam and M. Govindaraj, Nat. Environ. Pollut. Technol., 20, 1069 (2021); https://doi.org/10.46488/NEPT.2021.v20i03.014
R. Singh, M. Singh, N. Kumari, S. Janak, S. Maharana and P. Maharana, J. Compos. Sci., 5, 162 (2021); https://doi.org/10.3390/jcs5060162
R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
T.M. Breault and B.M. Bartlett, J. Phys. Chem. C, 116, 5986 (2012); https://doi.org/10.1021/jp2078456
Y.-H. Chiu, T.-F.M. Chang, C.-Y. Chen, M. Sone and Y.-J. Hsu, Catalysts, 9, 430 (2019); https://doi.org/10.3390/catal9050430
R. Singh, Eds.: A. Patnaik, E. Kozeschnik, V. Kukshal, Advancements in Energy Storage through Graphene. In: Advances in Materials Processing and Manufacturing Applications. iCADMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore (2021).
V. Alwera, S. Sehlangia and S. Alwera, Sep. Sci. Technol., 56, 2278 (2021); https://doi.org/10.1080/01496395.2020.1819826
R. Singh, N. Kaur and M. Singh, Mater. Today Proc., 44, 242 (2021); https://doi.org/10.1016/j.matpr.2020.09.461
R. Singh, A. Altaee and S. Gautam, Heliyon, 6, e04487 (2020); https://doi.org/10.1016/j.heliyon.2020.e04487
R.S. Sabry, M.I. Rahmah and W.J. Aziz, J. Mater. Sci. Mater. Electron., 31, 13382 (2020); https://doi.org/10.1007/s10854-020-03893-8
Z.N. Kayani, A. Usman, H. Nazli, R. Sagheer, S. Riaz and S. Naseem, Appl. Phys., A Mater. Sci. Process., 126, 559 (2020); https://doi.org/10.1007/s00339-020-03748-3
D. Majumder, I. Chakraborty, K. Mandal and S. Roy, ACS Omega, 4, 4243 (2019); https://doi.org/10.1021/acsomega.8b03298
D. Channei, A. Nakaruk, P. Jannoey and S. Phanichphant, Solid State Sci., 87, 9 (2019); https://doi.org/10.1016/j.solidstatesciences.2018.10.016
Z.M. Yang, G.F. Huang, W.Q. Huang, J.M. Wei, X.G. Yan, Y.Y. Liu, C. Jiao, Z. Wan and A. Pan, J. Mater. Chem. A Mater. Energy Sustain., 2, 1750 (2014); https://doi.org/10.1039/C3TA14286H
N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett and J. Chen, ACS Appl. Mater. Interfaces, 4, 3718 (2012); https://doi.org/10.1021/am300812n
S. Hu, F. Zhou, L. Wang and J. Zhang, Catal. Commun., 12, 794 (2011); https://doi.org/10.1016/j.catcom.2011.01.027
A. Krishnan, S. Beena and M. Chandran, Mater. Today Proc., 18, 4968 (2019); https://doi.org/10.1016/j.matpr.2019.07.489
H. Liu, H.K. Shon, X. Sun, S. Vigneswaran and H. Nan, Appl. Surf. Sci., 257, 5813 (2011); https://doi.org/10.1016/j.apsusc.2011.01.110
A.I. Ahmed S.M. Hassan and M.A. Mannaa, J. Sci.: Adv. Mater. Dev., 4, 400 (2019); https://doi.org/10.1016/j.jsamd.2019.06.004
M. Sohail, N. Baig, M. Sher, R. Jamil, M. Altaf, S. Akhtar and M. Sharif, ACS Omega, 5, 6405 (2020); https://doi.org/10.1021/acsomega.9b03876
S. Alwera and R. Bhushan, Biomed. Chromatogr., 31, e3983 (2017); https://doi.org/10.1002/bmc.3983
V. Alwera, S. Sehlangia and S. Alwera, J. Liq. Chromatogr. Rel. Technol., 43, 742 (2020); https://doi.org/10.1080/10826076.2020.1798250
A. Krishnan and S.M. Aboobakar Shibli, Ind. Eng. Chem. Res., 57, 16217 (2018); https://doi.org/10.1021/acs.iecr.8b03692
T.C. Bhagya, A. Krishnan, A.R. S, A.S. M, B.R. Sreelekshmy, P. Jineesh and S.M.A. Shibli, Photochem. Photobiol. Sci., 18, 1716 (2019); https://doi.org/10.1039/C9PP00119K
S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1772 (2016); https://doi.org/10.1002/bmc.3752
S. Alwera and R. Bhushan, J. Liq. Chromatogr. Rel. Technol., 40, 707 (2017); https://doi.org/10.1080/10826076.2017.1348954
M.R. Abhilash, G. Akshatha and S. Srikantaswamy, RSC Adv., 9, 8557 (2019); https://doi.org/10.1039/C8RA09929D
A. Krishnan, M.A. Sha, R. Basheer, A.H. Riyas and S.M.A. Shibli, Mater. Sci. Semicond. Process., 116, 105138 (2020); https://doi.org/10.1016/j.mssp.2020.105138
J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu and Y. Qian, Eur. J. Inorg. Chem., 2010, 1172 (2010); https://doi.org/10.1002/ejic.200901116
L.-C. Chen, Y.-J. Tu, Y.-S. Wang, R.-S. Kan and C.-M. Huang, J. Photochem. Photobiol. Chem., 199, 170 (2008); https://doi.org/10.1016/j.jphotochem.2008.05.022
H. Lahmar, M. Benamira, S. Douafer, L. Messaadia, A. Boudjerda and M. Trari, Chem. Phys. Lett., 742, 137132 (2020); https://doi.org/10.1016/j.cplett.2020.137132
V. Eskizeybek, F. Sari, H. Gülce, A. Gülce and A. Avci, Appl. Catal. B, 119-120, 197 (2012); https://doi.org/10.1016/j.apcatb.2012.02.034
S. Prabhu, T. Viswanathan, K. Jothivenkatachalam and K. Jeganathan, Int. J. Mater. Sci., 2014, 536123 (2014); https://doi.org/10.1155/2014/536123
A. Boughelout, R. Macaluso, M. Kechouane and M. Trari, React. Kinet. Mech. Catal., 129, 1115 (2020); https://doi.org/10.1007/s11144-020-01741-8
H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park and A.C.K. Yip, Nano Res., 12, 955 (2019); https://doi.org/10.1007/s12274-019-2287-0
V. Alwera, S. Singh, V.C. Srivastava and T.K. Mandal, ChemistrySelect, 5, 4674 (2020); https://doi.org/10.1002/slct.202000298
S. Alwera, V. Alwera and S. Sehlangia, Biomed. Chromatogr., 34, e4943 (2020); https://doi.org/10.1002/bmc.4943
S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1223 (2016); https://doi.org/10.1002/bmc.3671
S. Alwera, ACS Sustain. Chem.& Eng., 6, 11653 (2018); https://doi.org/10.1021/acssuschemeng.8b01869
J. Bandara, U. Klehm and J. Kiwi, Appl. Catal. B, 76, 73 (2007); https://doi.org/10.1016/j.apcatb.2007.05.007
R. Zha, R. Nadimicherla and X. Guo, J. Mater. Chem. A Mater. Energy Sustain., 3, 6565 (2015); https://doi.org/10.1039/C5TA00764J