This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-assisted Synthesis of 2-Substituted Naphtho[1,2-d][1,3]oxazoles by Reacting 1-Nitroso-2-naphthol with Allyl Bromides and Benzyl Bromides using FeCl3 as Catalyst
Corresponding Author(s) : N. Aljaar
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
Efficient and improved preparation of 2-substituted[1,2-d][1,3]oxazoles by the reaction of 1-nitroso-2-naphthol and allyl bromides, benzyl bromides under microwave condition utilizing FeCl3
as a catalyst with yield ranging from 32% to 72%. Reaction with bromo acetonitrile yields the corresponding 2-cyanonaphthoxazole with 58% yield.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.V. Kumar, Asian J. Chem., 14, 1241 (2004).
- G.V. Boyd, ed.: E. Schaumann, Product Class 12: Oxazoles, Category 2, Hetarenes and Related Ring Systems, In: Science of Synthesis, Stuttgart: Germany, vol. 11, p. 481 (2001).
- W. Frederick and J. Hartner, ed.: A.R. Katritzky, C.W. Rees and E.F. V. Scriven, Comprehensive Heterocyclic Chemistry II, Pergamon: Oxford, vol. 3, p. 261 (1996).
- V.S.C. Yeh, Tetrahedron, 60, 11995 (2004); https://doi.org/10.1016/j.tet.2004.10.001
- J. Easmon, G. Pürstinger, K.-S. Thies, G. Heinisch and J. Hofmann, J. Med. Chem., 49, 6343 (2006); https://doi.org/10.1021/jm060232u
- L. Leventhal, M.R. Brandt, T.A. Cummons, M.J. Piesla, K.E. Rogers and H.A. Harris, Eur. J. Pharmacol., 553, 146 (2006); https://doi.org/10.1016/j.ejphar.2006.09.033
- J.A. Grobler, G. Dornadula, R.M. Rice, A.L. Simcoe, D.J. Hazuda and M.D. Miller, J. Biol. Chem., 282, 8005 (2007); https://doi.org/10.1074/jbc.M608274200
- S. Yoshida, S. Shiokawa, K. Kawano, T. Ito, H. Murakami, H. Suzuki and Y. Sato, J. Med. Chem., 48, 7075 (2005); https://doi.org/10.1021/jm050209t
- D.C. Tully, H. Liu, P.B. Alper, A.K. Chatterjee, R. Epple, M.J. Roberts, J.A. Williams, K.T. Nguyen, D.H. Woodmansee, C. Tumanut, J. Li, G. Spraggon, J. Chang, T. Tuntland, J.L. Harris and D.S. Karanewsky, Bioorg. Med. Chem. Lett., 16, 1975 (2006); https://doi.org/10.1016/j.bmcl.2005.12.095
- M. Ueki, K. Ueno, S. Miyadoh, K. Abe, K. Shibata, M. Taniguchi and S. Oi, J. Antibiot. (Tokyo), 46, 1089 (1993); https://doi.org/10.7164/antibiotics.46.1089
- M.-J. Don, C.-C. Shen, Y.-L. Lin, W.-J. Syu, Y.-H. Ding and C.-M. Sun, J. Nat. Prod., 68, 1066 (2005); https://doi.org/10.1021/np0500934
- S. Sato, T. Kajiura, M. Noguchi, K. Takehana, T. Kobayashi and T. Tsuji, J. Antibiot. (Tokyo), 54, 102 (2001); https://doi.org/10.7164/antibiotics.54.102
- A.D. Rodríguez, C. Ramírez, I.I. Rodríguez and E. González, Org. Lett., 1, 527 (1999); https://doi.org/10.1021/ol9907116
- Y. Ooyama, Y. Kagawa, H. Fukuoka, G. Ito and Y. Harima, Eur. J. Org. Chem., 5321 (2009); https://doi.org/10.1002/ejoc.200900758
- Y. Ooyama, H. Egawa and K. Yoshida, Eur. J. Org. Chem., 5239 (2008); https://doi.org/10.1002/ejoc.200800606
- K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi and S. Iwata, J. Org. Chem., 66, 7328 (2001); https://doi.org/10.1021/jo010462a
- R. Ruiz-González, R. Zanocco, Y. Gidi, A.L. Zanocco, S. Nonell and E. Lemp, Photochem. Photobiol., 89, 1427 (2013); https://doi.org/10.1111/php.12106
- A.R. Katritzky, Z. Wang, C.D. Hall, N.G. Akhmedov, A.A. Shestopalov and P.J. Steel, J. Org. Chem., 68, 9093 (2003); https://doi.org/10.1021/jo026771y
- W. Yao and D. Huang, Org. Lett., 12, 736 (2010); https://doi.org/10.1021/ol902812q
- P. Astolfi, P. Carloni, R. Castagna, L. Greci, P. Stipa and C. Rizzoli, J. Heterocycl. Chem., 41, 971 (2004); https://doi.org/10.1002/jhet.5570410618
- N. Aljaar, C.C. Malakar, J. Conrad, W. Frey and U. Beifuss, J. Org. Chem., 78, 10829 (2013);https://doi.org/10.1021/acs.joc.5b02000
- H. Li, K. Wei and Y.-J. Wu, Chin. J. Chem., 25, 1704 (2007); https://doi.org/10.1002/cjoc.200790315
- A.-M. Osman and I. Bassiouni, J. Org. Chem., 27, 558 (1962); https://doi.org/10.1021/jo01049a051
- R.-G. Xing, Y.-N. Li, Q. Liu, Q.-Y. Meng, J. Li, X.-X. Shen, Z. Liu, B. Zhou, X. Yao and Z.-L. Liu, Eur. J. Org. Chem., 6627 (2010); https://doi.org/10.1002/ejoc.201000985
- C. Saitz, H. Rodríguez, A. Márquez, A. Cañete, C. Jullian and A. Zanocco, Synth. Commun., 31, 135 (2001); https://doi.org/10.1081/SCC-100000190
- M. Gaba and N. Dhingra, Ind. J. Pharm. Educ. Res., 45, 175 (2011).
- P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001); https://doi.org/10.1016/S0040-4020(01)00906-1
References
R.V. Kumar, Asian J. Chem., 14, 1241 (2004).
G.V. Boyd, ed.: E. Schaumann, Product Class 12: Oxazoles, Category 2, Hetarenes and Related Ring Systems, In: Science of Synthesis, Stuttgart: Germany, vol. 11, p. 481 (2001).
W. Frederick and J. Hartner, ed.: A.R. Katritzky, C.W. Rees and E.F. V. Scriven, Comprehensive Heterocyclic Chemistry II, Pergamon: Oxford, vol. 3, p. 261 (1996).
V.S.C. Yeh, Tetrahedron, 60, 11995 (2004); https://doi.org/10.1016/j.tet.2004.10.001
J. Easmon, G. Pürstinger, K.-S. Thies, G. Heinisch and J. Hofmann, J. Med. Chem., 49, 6343 (2006); https://doi.org/10.1021/jm060232u
L. Leventhal, M.R. Brandt, T.A. Cummons, M.J. Piesla, K.E. Rogers and H.A. Harris, Eur. J. Pharmacol., 553, 146 (2006); https://doi.org/10.1016/j.ejphar.2006.09.033
J.A. Grobler, G. Dornadula, R.M. Rice, A.L. Simcoe, D.J. Hazuda and M.D. Miller, J. Biol. Chem., 282, 8005 (2007); https://doi.org/10.1074/jbc.M608274200
S. Yoshida, S. Shiokawa, K. Kawano, T. Ito, H. Murakami, H. Suzuki and Y. Sato, J. Med. Chem., 48, 7075 (2005); https://doi.org/10.1021/jm050209t
D.C. Tully, H. Liu, P.B. Alper, A.K. Chatterjee, R. Epple, M.J. Roberts, J.A. Williams, K.T. Nguyen, D.H. Woodmansee, C. Tumanut, J. Li, G. Spraggon, J. Chang, T. Tuntland, J.L. Harris and D.S. Karanewsky, Bioorg. Med. Chem. Lett., 16, 1975 (2006); https://doi.org/10.1016/j.bmcl.2005.12.095
M. Ueki, K. Ueno, S. Miyadoh, K. Abe, K. Shibata, M. Taniguchi and S. Oi, J. Antibiot. (Tokyo), 46, 1089 (1993); https://doi.org/10.7164/antibiotics.46.1089
M.-J. Don, C.-C. Shen, Y.-L. Lin, W.-J. Syu, Y.-H. Ding and C.-M. Sun, J. Nat. Prod., 68, 1066 (2005); https://doi.org/10.1021/np0500934
S. Sato, T. Kajiura, M. Noguchi, K. Takehana, T. Kobayashi and T. Tsuji, J. Antibiot. (Tokyo), 54, 102 (2001); https://doi.org/10.7164/antibiotics.54.102
A.D. Rodríguez, C. Ramírez, I.I. Rodríguez and E. González, Org. Lett., 1, 527 (1999); https://doi.org/10.1021/ol9907116
Y. Ooyama, Y. Kagawa, H. Fukuoka, G. Ito and Y. Harima, Eur. J. Org. Chem., 5321 (2009); https://doi.org/10.1002/ejoc.200900758
Y. Ooyama, H. Egawa and K. Yoshida, Eur. J. Org. Chem., 5239 (2008); https://doi.org/10.1002/ejoc.200800606
K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi and S. Iwata, J. Org. Chem., 66, 7328 (2001); https://doi.org/10.1021/jo010462a
R. Ruiz-González, R. Zanocco, Y. Gidi, A.L. Zanocco, S. Nonell and E. Lemp, Photochem. Photobiol., 89, 1427 (2013); https://doi.org/10.1111/php.12106
A.R. Katritzky, Z. Wang, C.D. Hall, N.G. Akhmedov, A.A. Shestopalov and P.J. Steel, J. Org. Chem., 68, 9093 (2003); https://doi.org/10.1021/jo026771y
W. Yao and D. Huang, Org. Lett., 12, 736 (2010); https://doi.org/10.1021/ol902812q
P. Astolfi, P. Carloni, R. Castagna, L. Greci, P. Stipa and C. Rizzoli, J. Heterocycl. Chem., 41, 971 (2004); https://doi.org/10.1002/jhet.5570410618
N. Aljaar, C.C. Malakar, J. Conrad, W. Frey and U. Beifuss, J. Org. Chem., 78, 10829 (2013);https://doi.org/10.1021/acs.joc.5b02000
H. Li, K. Wei and Y.-J. Wu, Chin. J. Chem., 25, 1704 (2007); https://doi.org/10.1002/cjoc.200790315
A.-M. Osman and I. Bassiouni, J. Org. Chem., 27, 558 (1962); https://doi.org/10.1021/jo01049a051
R.-G. Xing, Y.-N. Li, Q. Liu, Q.-Y. Meng, J. Li, X.-X. Shen, Z. Liu, B. Zhou, X. Yao and Z.-L. Liu, Eur. J. Org. Chem., 6627 (2010); https://doi.org/10.1002/ejoc.201000985
C. Saitz, H. Rodríguez, A. Márquez, A. Cañete, C. Jullian and A. Zanocco, Synth. Commun., 31, 135 (2001); https://doi.org/10.1081/SCC-100000190
M. Gaba and N. Dhingra, Ind. J. Pharm. Educ. Res., 45, 175 (2011).
P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001); https://doi.org/10.1016/S0040-4020(01)00906-1