Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quality of Microporous Activated Charcoal from Coconut Shell Waste in Industrial Scale
Corresponding Author(s) : S. Darmawan
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Due to its diverse applications in the adsorption process, the activated charcoal encourages the manufacturing technology to produce high-quality products. In present study, an industrial-scale activated charcoal was prepared in activated charcoal manufacturing companies using coconut shells waste as raw material. The process of making activated charcoal begins with preparation, carbonization and activation of charcoal into activated charcoal using the addition of steam as an activator. The resulting activated charcoal products meet the quality requirements of the Indonesian National Standard (SNI). The best-activated charcoal product from PT Nui Hia Prima produces iodine adsorption reaching 876.2 mg/g with the surface area of 504.306 m2/g and a total pore volume of 0.298 cm3/g. After some treatment with steam addition, the best product resulting in iodine and methylene blue adsorption are 973.9 mg/g and 121.25 mg/g, respectively. The development of the activated charcoal products expected to adjust with a technology that is more capable of producing better quality activated charcoal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lu, J. Jiang, K. Sun, J. Wang and Y. Zhang, Mar. Pollut. Bull., 78, 69 (2014); https://doi.org/10.1016/j.marpolbul.2013.11.007
- M.A. Ahmad, N.A. Ahmad Puad and O.S. Bello, Water Resour. Ind., 6, 18 (2014); https://doi.org/10.1016/j.wri.2014.06.002
- E. Carrari, E. Ampoorter, F. Bussotti, A.G. Nogales, M. Pollastrini, A. Coppi, K. Verheyen and F. Selvi, For. Ecol. Manage., 427, 37 (2018); https://doi.org/10.1016/j.foreco.2018.05.038
- X. Guo, C. Zhu and F. Guo, BioResources, 11, 2457 (2016).
- J. Xu, H. Liu, R. Yang, G. Li and C. Hu, Chin. J. Catal., 33, 1622 (2012); https://doi.org/10.1016/S1872-2067(11)60444-0
- P.W. Baker, A. Winters and M.D.C. Hale, Bioresource, 11, 4379 (2016); https://doi.org/10.15376/biores.11.2.4379-4391
- X. Peng, S. Shen, C. Wang, T. Li, Y. Li, S. Yuan and X. Wen, J. Mol. Catal., 442, 133 (2017); https://doi.org/10.1016/j.mcat.2017.09.012
- N. Suriyachai, V. Champreda, C. Sakdaronnarong, A. Shotipruk and N. Laosiripojana, Renew. Energy, 113, 1141 (2017); https://doi.org/10.1016/j.renene.2017.06.003
- F. Shen, T. Guo, C. Bai, M. Qiu and X. Qi, Fuel Process. Technol., 169, 244 (2018); https://doi.org/10.1016/j.fuproc.2017.10.015
- E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan and P.M. Johnson, Appl. Surf. Sci., 486, 527 (2019); https://doi.org/10.1016/j.apsusc.2019.05.004
- N.T. Abdel-Ghani, G.A. El-Chaghaby, E.S.A. Rawash and E.C. Lima, J. Adv. Res., 17, 55 (2019); https://doi.org/10.1016/j.jare.2018.12.004
- M.D. Tudjuka, K.D. Walanda and B. Hamzah, J. Akad. Kim., 6, 119 (2017); https://doi.org/10.22487/j24775185.2017.v6.i2.9243
- E.A. Khan, Shahjahan and T.A. Khan, J. Mol. Liq., 249, 1195 (2018); https://doi.org/10.1016/j.molliq.2017.11.125.
- G.S. Pambayun, R.Y.E. Yulianto, M. Rachimoellah and E.M.M. Putri, J. Tek. Pomits, 2, 116 (2013).
- W. Widiyastuti, M. Fahrudin Rois, N.M.I.P. Suari and H. Setyawan, Adv. Powder Technol., 31, 3267 (2020); https://doi.org/10.1016/j.apt.2020.06.012
- T. Sruthi, J. Ashok, S.M. Nissy, C.K. Rao and M. Vangalapati, Mater. Today Proc., 18, 5240 (2019); https://doi.org/10.1016/j.matpr.2019.07.524
- L.T.N. Huynh, T.N. Pham, T.H. Nguyen, V.H. Le, T.T. Nguyen, T.D.K. Nguyen, T.N. Tran, P.A.V. Ho, T.T. Co, T.T.T. Nguyen, T.K.A. Vo, T.H. Nguyen, T.T. Vu, V.M. Luong, H. Uyama, G.V. Pham, T. Hoang and D.L. Tran, Synth. Met., 265, 116415 (2020); https://doi.org/10.1016/j.synthmet.2020.116415
- D. DasSharma, S. Samanta, D.N.K. S and G. Halder, J. Environ. Chem. Eng., 8, 104140 (2020); https://doi.org/10.1016/j.jece.2020.104140
- Z. Hao, C. Wang, Z. Yan, H. Jiang and H. Xu, Chemosphere, 211, 962 (2018); https://doi.org/10.1016/j.chemosphere.2018.08.038
- R. Khosravi, A. Azizi, R. Ghaedrahmati, V.K. Gupta and S. Agarwal, J. Ind. Eng. Chem., 54, 464 (2017); https://doi.org/10.1016/j.jiec.2017.06.036
- A.K. Prajapati and M.K. Mondal, J. Mol. Liq., 307, 112949 (2020); https://doi.org/10.1016/j.molliq.2020.112949
- J. Xiong, S. Yu, H. Zhu, S. Wang, Y. Chen and S. Liu, BioResources, 11, 3813 (2016); https://doi.org/10.15376/biores.11.2.3813-3824
- Y. Zhu and P. Kolar, J. Taiwan Inst. Chem. Eng., 68, 138 (2016); https://doi.org/10.1016/j.jtice.2016.07.044
- M.S. Gamal, N. Asikin-Mijan, M. Arumugam, U. Rashid and Y. Taufiq-Yap, J. Anal. Appl. Pyrolysis, 144, 104690 (2019); https://doi.org/10.1016/j.jaap.2019.104690
- X. Xing, T. Li, Z. Bi, P. Qi, Z. Li, H. Wang, L. Lyu, Y. Gao and C. Hu, J. Hazard. Mater., 392, 122077 (2020); https://doi.org/10.1016/j.jhazmat.2020.122077
- H. Adamu, A. Sabo, A.A. Chinade and A.F. Lame, Int. J. Renew. Energy Res., 8, 1508 (2018).
- Q. Liang, Y. Liu, M. Chen, L. Ma, B. Yang, L. Li and Q. Liu, Mater. Chem. Phys., 241, 122327 (2020); https://doi.org/10.1016/j.matchemphys.2019.122327
- S. Jamilatun and S. Martomo, Spectrum Ind., 12, 73 (2014).
- L.S. Queiroz, L.K.C. de Souza, K.T.C. Thomaz, E.T.L. Lima, G.N. da Rocha Filho, L.A.S. do Nascimento, L.H. de Oliveira Pires, K. do Carmo Freitas Faial and C.E.F. da Costa, J. Environ. Manag., 270, 110868 (2020); https://doi.org/10.1016/j.jenvman.2020.110868
- K. Promdee, J. Chanvidhwatanakit, S. Satitkune, C. Boonmee, T. Kawichai, S. Jarernprasert and T. Vitidsant, Renew. Sustain. Energy Rev., 75, 1175 (2017); https://doi.org/10.1016/j.rser.2016.11.099
- J.V. Freitas, F.G.E. Nogueira and C.S. Farinas, Ind. Crops Prod., 137, 16 (2019); https://doi.org/10.1016/j.indcrop.2019.05.018
- C.W. Purnomo, E.P. Kesuma, I. Perdana and M. Aziz, Waste Manag., 79, 454 (2018); https://doi.org/10.1016/j.wasman.2018.08.017
- C. Jiang, G.A. Yakaboylu, T. Yumak, J.W. Zondlo, E.M. Sabolsky and J. Wang, Renew. Energy, 155, 38 (2020); https://doi.org/10.1016/j.renene.2020.03.111
- R. Fang, H. Huang, J. Ji, M. He, Q. Feng, Y. Zhan and D.Y.C. Leung, Chem. Eng. J., 334, 2050 (2018); https://doi.org/10.1016/j.cej.2017.11.176
- K. Sun, C. Leng, J. Jiang, Q. Bu, G. Lin, X. Lu and G. Zhu, N. Carbon Mater., 32, 451 (2017); https://doi.org/10.1016/S1872-5805(17)60134-3
- A.R. Hidayu and N. Muda, Procedia Eng., 148, 106 (2016); https://doi.org/10.1016/j.proeng.2016.06.463
- A. Kumar and H.M. Jena, Results Phys., 6, 651 (2016); https://doi.org/10.1016/j.rinp.2016.09.012
- Z. Zhang, Y. Lei, D. Li, J. Zhao, Y. Wang, G. Zhou, C. Yan and Q. He, Renew. Energy, 153, 1091 (2020); https://doi.org/10.1016/j.renene.2020.02.059
References
X. Lu, J. Jiang, K. Sun, J. Wang and Y. Zhang, Mar. Pollut. Bull., 78, 69 (2014); https://doi.org/10.1016/j.marpolbul.2013.11.007
M.A. Ahmad, N.A. Ahmad Puad and O.S. Bello, Water Resour. Ind., 6, 18 (2014); https://doi.org/10.1016/j.wri.2014.06.002
E. Carrari, E. Ampoorter, F. Bussotti, A.G. Nogales, M. Pollastrini, A. Coppi, K. Verheyen and F. Selvi, For. Ecol. Manage., 427, 37 (2018); https://doi.org/10.1016/j.foreco.2018.05.038
X. Guo, C. Zhu and F. Guo, BioResources, 11, 2457 (2016).
J. Xu, H. Liu, R. Yang, G. Li and C. Hu, Chin. J. Catal., 33, 1622 (2012); https://doi.org/10.1016/S1872-2067(11)60444-0
P.W. Baker, A. Winters and M.D.C. Hale, Bioresource, 11, 4379 (2016); https://doi.org/10.15376/biores.11.2.4379-4391
X. Peng, S. Shen, C. Wang, T. Li, Y. Li, S. Yuan and X. Wen, J. Mol. Catal., 442, 133 (2017); https://doi.org/10.1016/j.mcat.2017.09.012
N. Suriyachai, V. Champreda, C. Sakdaronnarong, A. Shotipruk and N. Laosiripojana, Renew. Energy, 113, 1141 (2017); https://doi.org/10.1016/j.renene.2017.06.003
F. Shen, T. Guo, C. Bai, M. Qiu and X. Qi, Fuel Process. Technol., 169, 244 (2018); https://doi.org/10.1016/j.fuproc.2017.10.015
E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan and P.M. Johnson, Appl. Surf. Sci., 486, 527 (2019); https://doi.org/10.1016/j.apsusc.2019.05.004
N.T. Abdel-Ghani, G.A. El-Chaghaby, E.S.A. Rawash and E.C. Lima, J. Adv. Res., 17, 55 (2019); https://doi.org/10.1016/j.jare.2018.12.004
M.D. Tudjuka, K.D. Walanda and B. Hamzah, J. Akad. Kim., 6, 119 (2017); https://doi.org/10.22487/j24775185.2017.v6.i2.9243
E.A. Khan, Shahjahan and T.A. Khan, J. Mol. Liq., 249, 1195 (2018); https://doi.org/10.1016/j.molliq.2017.11.125.
G.S. Pambayun, R.Y.E. Yulianto, M. Rachimoellah and E.M.M. Putri, J. Tek. Pomits, 2, 116 (2013).
W. Widiyastuti, M. Fahrudin Rois, N.M.I.P. Suari and H. Setyawan, Adv. Powder Technol., 31, 3267 (2020); https://doi.org/10.1016/j.apt.2020.06.012
T. Sruthi, J. Ashok, S.M. Nissy, C.K. Rao and M. Vangalapati, Mater. Today Proc., 18, 5240 (2019); https://doi.org/10.1016/j.matpr.2019.07.524
L.T.N. Huynh, T.N. Pham, T.H. Nguyen, V.H. Le, T.T. Nguyen, T.D.K. Nguyen, T.N. Tran, P.A.V. Ho, T.T. Co, T.T.T. Nguyen, T.K.A. Vo, T.H. Nguyen, T.T. Vu, V.M. Luong, H. Uyama, G.V. Pham, T. Hoang and D.L. Tran, Synth. Met., 265, 116415 (2020); https://doi.org/10.1016/j.synthmet.2020.116415
D. DasSharma, S. Samanta, D.N.K. S and G. Halder, J. Environ. Chem. Eng., 8, 104140 (2020); https://doi.org/10.1016/j.jece.2020.104140
Z. Hao, C. Wang, Z. Yan, H. Jiang and H. Xu, Chemosphere, 211, 962 (2018); https://doi.org/10.1016/j.chemosphere.2018.08.038
R. Khosravi, A. Azizi, R. Ghaedrahmati, V.K. Gupta and S. Agarwal, J. Ind. Eng. Chem., 54, 464 (2017); https://doi.org/10.1016/j.jiec.2017.06.036
A.K. Prajapati and M.K. Mondal, J. Mol. Liq., 307, 112949 (2020); https://doi.org/10.1016/j.molliq.2020.112949
J. Xiong, S. Yu, H. Zhu, S. Wang, Y. Chen and S. Liu, BioResources, 11, 3813 (2016); https://doi.org/10.15376/biores.11.2.3813-3824
Y. Zhu and P. Kolar, J. Taiwan Inst. Chem. Eng., 68, 138 (2016); https://doi.org/10.1016/j.jtice.2016.07.044
M.S. Gamal, N. Asikin-Mijan, M. Arumugam, U. Rashid and Y. Taufiq-Yap, J. Anal. Appl. Pyrolysis, 144, 104690 (2019); https://doi.org/10.1016/j.jaap.2019.104690
X. Xing, T. Li, Z. Bi, P. Qi, Z. Li, H. Wang, L. Lyu, Y. Gao and C. Hu, J. Hazard. Mater., 392, 122077 (2020); https://doi.org/10.1016/j.jhazmat.2020.122077
H. Adamu, A. Sabo, A.A. Chinade and A.F. Lame, Int. J. Renew. Energy Res., 8, 1508 (2018).
Q. Liang, Y. Liu, M. Chen, L. Ma, B. Yang, L. Li and Q. Liu, Mater. Chem. Phys., 241, 122327 (2020); https://doi.org/10.1016/j.matchemphys.2019.122327
S. Jamilatun and S. Martomo, Spectrum Ind., 12, 73 (2014).
L.S. Queiroz, L.K.C. de Souza, K.T.C. Thomaz, E.T.L. Lima, G.N. da Rocha Filho, L.A.S. do Nascimento, L.H. de Oliveira Pires, K. do Carmo Freitas Faial and C.E.F. da Costa, J. Environ. Manag., 270, 110868 (2020); https://doi.org/10.1016/j.jenvman.2020.110868
K. Promdee, J. Chanvidhwatanakit, S. Satitkune, C. Boonmee, T. Kawichai, S. Jarernprasert and T. Vitidsant, Renew. Sustain. Energy Rev., 75, 1175 (2017); https://doi.org/10.1016/j.rser.2016.11.099
J.V. Freitas, F.G.E. Nogueira and C.S. Farinas, Ind. Crops Prod., 137, 16 (2019); https://doi.org/10.1016/j.indcrop.2019.05.018
C.W. Purnomo, E.P. Kesuma, I. Perdana and M. Aziz, Waste Manag., 79, 454 (2018); https://doi.org/10.1016/j.wasman.2018.08.017
C. Jiang, G.A. Yakaboylu, T. Yumak, J.W. Zondlo, E.M. Sabolsky and J. Wang, Renew. Energy, 155, 38 (2020); https://doi.org/10.1016/j.renene.2020.03.111
R. Fang, H. Huang, J. Ji, M. He, Q. Feng, Y. Zhan and D.Y.C. Leung, Chem. Eng. J., 334, 2050 (2018); https://doi.org/10.1016/j.cej.2017.11.176
K. Sun, C. Leng, J. Jiang, Q. Bu, G. Lin, X. Lu and G. Zhu, N. Carbon Mater., 32, 451 (2017); https://doi.org/10.1016/S1872-5805(17)60134-3
A.R. Hidayu and N. Muda, Procedia Eng., 148, 106 (2016); https://doi.org/10.1016/j.proeng.2016.06.463
A. Kumar and H.M. Jena, Results Phys., 6, 651 (2016); https://doi.org/10.1016/j.rinp.2016.09.012
Z. Zhang, Y. Lei, D. Li, J. Zhao, Y. Wang, G. Zhou, C. Yan and Q. He, Renew. Energy, 153, 1091 (2020); https://doi.org/10.1016/j.renene.2020.02.059