Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mitigation and Chemistry of Indoor Air Pollutants in Urban and Rural Environments of India: A Review of Contemporary Advances
Corresponding Author(s) : Samridhi Dwivedi
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Globally people devote approximately 90% of their time indoors either in their house or office or institution, etc. Together with the dispersion of outdoor air pollutants, toxins are produced in indoor atmosphere owing to various actions such as heating, cooking, cooling and emissions from building materials. Hence, the indoor air quality (IAQ) influences human well-being and efficiency. Even though indoor air quality (IAQ) research has been done from various outlooks, there is still an absence of inclusive assessment of peer reviewed IAQ studies, which precisely covers the IAQ in rural and urban environment helping to recognize the sources and consequences in both the environment, respectively. Therefore, this review article of scientific studies offers a broad spectrum of pollutants identified in both rural and urban indoor environments in context to India, highlighting the technical interventions, modelling techniques and remedies such as HEPA filters, carbon filters, bioremediation etc. in course of improving IAQ. This review also elucidates the chemistry of pollutants along with general chemical reactions between pollutants. Thus, this review paper holds the potential to help building professionals and researchers in the field for regulating indoor air quality and generate healthy and sustainable indoor environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Agarwal, C.S. Meena, B.P. Raj, L. Saini, N. Gopalakrishnan, A. Kumar, N.B. Balam, T. Alam, N.R. Kapoor and V. Aggarwal, Sustain Cities Soc., 70, 102942 (2021); https://doi.org/10.1016/j.scs.2021.102942
- T. Ahmed, P. Kumar and L. Mottet, Renew. Sustain. Energy Rev., 138, 110669 (2021); https://doi.org/10.1016/j.rser.2020.110669
- S. Sonwani, Source Apportionment of Polycyclic Aromatic Hydrocarbons in Atmosphere of South Delhi, India; 2nd International Conference on Atmospheric Dust - DUST2016, ProScience Conference Proceedings of ScientEvents, Italy, vol. 3, pp. 111-116 (2016).
- D. Fowler, P. Brimblecombe, J. Burrows, M.R. Heal, P. Grennfelt, D.S. Stevenson, A. Jowett, E. Nemitz, M. Coyle, X. Liu, Y. Chang, G.W. Fuller, M.A. Sutton, Z. Klimont, M.H. Unsworth and M. Vieno, Phil. Trans. R. Soc. A, 378, 20190314 (2020); https://doi.org/10.1098/rsta.2019.0314
- A. Eliassen, J. Saltbones, F. Stordal, H. Oystein, I. Isaksen and F. Stordal, J. APPL. METEORAL, 21, 1645 (1982); https://doi.org/10.1175/1520-0450(1982)021<1645:ALLRTM> 2.0.CO;2
- A.K. Upadhyay, A. Singh, K. Kumar and A. Singh, BMC Public Health, 15, 300 (2015); https://doi.org/10.1186/s12889-015-1631-7
- A.J. Lawrence, T. Khan and I. Azad, Global NEST J., 22, 28 (2019); https://doi.org/10.30955/gnj.003105
- https://www.who.int/ceh/capacity/Indoor_Air_Pollution.pdf (accessed on 7-oct-2021).
- J.P.D. Abbatt and C. Wang, Environ. Sci. Process. Impacts, 22, 25 (2020); https://doi.org/10.1039/C9EM00386J
- M. Li, F. Bao, Y. Zhang, W. Song, C. Chen and J. Zhao, Proc. Natl. Acad. Sci. USA, 115, 7717 (2018); https://doi.org/10.1073/pnas.1804481115
- M.Y. Wang, Y.W. Lu, F. Wu, X.J. Zhang and C.X. Yang, Procedia Eng., 121, 521 (2015); https://doi.org/10.1016/j.proeng.2015.08.1023
- https://www.nap.edu/catalog/1889/rethinking-the-ozone-problem-inurban-and-regional-air pollution (accessed on-8-Oct-2021).
- J.N. Pitts Jr., H.W. Biermann, E.C. Tuazon, M. Green, W.D. Long and A.M. Winer, JAPCA, 39, 1344 (1989); https://doi.org/10.1080/08940630.1989.10466629
- C.W. Spicer, R.W. Coutant, G.F. Ward, D.W. Joseph, A.J. Gaynor and I.H. Billick, Environ. Int., 15, 643 (1989); https://doi.org/10.1016/0160-4120(89)90087-1
- J. Barbara, F. Pitts and J.N. Pitts, Indoor Air Pollution: Sources, Levels, Chemistry and Fates, In: Chemistry of the Upper and Lower Atmosphere, Academic Press, Chap. 15, pp. 844-870 (2000).
- C.J. Weschler, H.C. Shields and D.V. Naik, Environ. Sci. Technol., 28, 2120 (1994); https://doi.org/10.1021/es00061a021
- C.J. Weschler, M. Brauer and P. Koutrakis, Environ. Sci. Technol., 26, 179 (1992); https://doi.org/10.1021/es00025a022
- J. Zhang, W.E. Wilson and P.J. Lioy, Environ. Sci. Technol., 28, 1975 (1994); https://doi.org/10.1021/es00060a031
- R. Reiss, P.B. Ryan, P. Koutrakis and S.J. Tibbetts, Environ. Sci. Technol., 29, 1906 (1995); https://doi.org/10.1021/es00008a007
- J. Zhang, W.E. Wilson and P.J. Lioy, J. Expo. Anal. Environ. Epidemiol., 4, 25 (1994).
- T. Grontoft and M. Raychaudhuri, Atmos. Environ., 38, 533 (2004); https://doi.org/10.1016/j.atmosenv.2003.10.010
- E. Gall, E. Darling, J.A. Siegel, G.C. Morrison and R.L. Corsi, Atmos. Environ., 77, 910 (2013); https://doi.org/10.1016/j.atmosenv.2013.06.014
- L.S. Pandrangi and G.C. Morrison, Atmos. Environ., 42, 5079 (2008); https://doi.org/10.1016/j.atmosenv.2008.02.009
- S. Zhou, M.W. Forbes, Y. Katrib and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 3, 170 (2016); https://doi.org/10.1021/acs.estlett.6b00086
- D.G. Poppendieck, H.F. Hubbard, C.J. Weschler and R.L. Corsi, Atmos. Environ., 41, 7614 (2007); https://doi.org/10.1016/j.atmosenv.2007.05.049.
- H. Wang and G. Morrison, Indoor Air, 20, 224 (2010); https://doi.org/10.1111/j.1600 0668.2010.00648.x
- D. Rim, E.T. Gall, R.L. Maddalena and W.W. Nazaroff, Atmos. Environ., 125, 15 (2016); https://doi.org/10.1016/j.atmosenv.2015.10.093
- E.T. Gall, R.L. Corsi and J.A. Siegel, Atmos. Environ., 45, 3338 (2011); https://doi.org/10.1016/j.atmosenv.2011.03.032
- F. Hanisch and J.N. Crowley, Atmos. Chem. Phys., 3, 119 (2003); https://doi.org/10.5194/acp-3-119-2003
- A. Wisthaler and C.J. Weschler, Proc. Natl. Acad. Sci. USA, 107, 6568 (2010); https://doi.org/10.1073/pnas.0904498106
- T. Salthammer and E. Uhde, Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation, Wiley, Ed.: 2 (2009); https://doi.org/10.1002/9783527628889
- J.R. Wells, G.C. Morrison, B.K. Coleman, C. Spicer and S.W. Dean, J. ASTM Int., 5, 101629 (2008); https://doi.org/10.1520/JAI101629
- J. Gumulka and L.L. Smith, J. Am. Chem. Soc., 105, 1972 (1983); https://doi.org/10.1021/ja00345a052
- J. Fick, L. Pommer, A. Astrand, R. Ostin, C. Nilsson and B. Andersson, Atmos. Environ., 39, 6315 (2005); https://doi.org/10.1016/j.atmosenv.2005.07.013
- S. Shu and G.C. Morrison, Atmos. Environ., 47, 421 (2012); https://doi.org/10.1016/j.atmosenv.2011.10.068
- W.-T. Chan and I.P. Hamilton, J. Chem. Phys., 118, 1688 (2003); https://doi.org/10.1063/1.1531104
- R. Criegee, Angew. Chem. Int. Ed. Engl., 14, 745 (1975); https://doi.org/10.1002/anie.197507451
- J. Kroll, N. Donahue, V. Cee, K. Demerjian and J. Anderson, J. Am. Chem. Soc., 124, 8518 (2002); https://doi.org/10.1021/ja0266060
- Z. Zhou, S. Zhou and J.P.D. Abbatt, Environ. Sci. Technol., 53, 12467 (2019); https://doi.org/10.1021/acs.est.9b04460
- C. Lai, B. Finlayson-Pitts and W. Willis, Chem. Res. Toxicol., 3, 517 (1990); https://doi.org/10.1021/tx00018a005
- D. Zhang and R. Zhang, J. Am. Chem. Soc., 124, 2692 (2002); https://doi.org/10.1021/ja011518l
- N. Heine, F.A. Houle and K.R. Wilson, Environ. Sci. Technol., 51, 13740 (2017); https://doi.org/10.1021/acs.est.7b04197
- R. Zhao, C.M. Kenseth, Y. Huang, N.F. Dalleska, X.M. Kuang, J. Chen, S.E. Paulson and J.H. Seinfeld, J. Phys. Chem. A, 122, 5190 (2018); https://doi.org/10.1021/acs.jpca.8b02195
- P.S.J. Lakey, G.C. Morrison, Y. Won, K.M. Parry, M. von Domaros, D.J. Tobias, D. Rim and M. Shiraiwa, Commun. Chem., 2, 56 (2019); https://doi.org/10.1038/s42004-019-0159-7
- H. Destaillats, B.C. Singer, S.K. Lee and L.A. Gundel, Environ. Sci. Technol., 40, 1799 (2006); https://doi.org/10.1021/es050914r
- B.T. Mmereki and D.J. Donaldson, J. Phys. Chem. A, 107, 11038 (2003); https://doi.org/10.1021/jp036119m
- S.M. Zhou, M. Shiraiwa, R.D. McWhinney, U. Poschl and J.P.D. Abbatt, Faraday Discuss., 165, 391 (2013); https://doi.org/10.1039/C3FD00030C
- U. Poschl, T. Letzel, C. Schauer and R. Niessner, J. Phys. Chem. A, 105, 4029 (2001); https://doi.org/10.1021/jp004137n
- S. Zhou, L.W.Y. Yeung, M.W. Forbes, S. Mabury and J.P.D. Abbatt, Environ. Sci. Process. Impacts, 19, 1292 (2017); https://doi.org/10.1039/C7EM00181A
- P. Sotero and R. Arce, J. Photochem. Photobiol. Chem., 199, 14 (2008); https://doi.org/10.1016/j.jphotochem.2008.04.011
- T. Salthammer, A. Bednarek, F. Fuhrmann, R. Funaki and S. Tanabe, J. Photochem. Photobiol. Chem., 152, 1 (2002); https://doi.org/10.1016/S1010-6030(02)00212-5
- A. Gandolfo, V. Bartolomei, E. Gomez Alvarez, S. Tlili, S. Gligorovski, J. Kleffmann and H. Wortham, Appl. Catal. B, 166-167, 84 (2015); https://doi.org/10.1016/j.apcatb.2014.11.011
- A. Gandolfo, L. Rouyer, H. Wortham and S. Gligorovski, Appl. Catal. B, 209, 429 (2017); https://doi.org/10.1016/j.apcatb.2017.03.021
- H. Schwartz-Narbonne, S.H. Jones and D.J. Donaldson, Environ. Sci. Technol. Lett., 6, 92 (2019); https://doi.org/10.1021/acs.estlett.8b00685
- T. Salthammer and F. Fuhrmann, Environ. Sci. Technol., 41, 6573 (2007); https://doi.org/10.1021/es070057m
- E. Uhde and T. Salthammer, Atmos. Environ., 41, 3111 (2007); https://doi.org/10.1016/j.atmosenv.2006.05.082
- S. Chino, S. Kato, J. Seo and Y. Ataka, Build. Environ., 44, 1337 (2009); https://doi.org/10.1016/j.buildenv.2008.07.003
- A. Bope, S.R. Haines, B. Hegarty, C.J. Weschler, J. Peccia and K.C. Dannemiller, Environ. Sci. Process. Impacts, 21, 1268 (2019); https://doi.org/10.1039/C9EM00050J
- T. Salthammer, S. Mentese and R. Marutzky, Chem. Rev., 110, 2536 (2010); https://doi.org/10.1021/cr800399g
- P. Wolkoff and S.K. Kjaergaard, Environ. Int., 33, 850 (2007); https://doi.org/10.1016/j.envint.2007.04.004
- J. Qiu, S. Ishizuka, K. Tonokura, A.J. Colussi and S. Enami, J. Phys. Chem. A, 122, 7910 (2018); https://doi.org/10.1021/acs.jpca.8b06914
- S. Zhou, S. Joudan, M.W. Forbes, Z. Zhou and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 6, 243 (2019); https://doi.org/10.1021/acs.estlett.9b00165
- B.J. Finlayson-Pitts and J.N. Pitts, Chemistry of the Lower and Upper Atmosphere, Academic Press: New York (2000).
- A. Botle, R.K. Singhal, H. Basu, M. v and J. Masih, Environ. Technol. Innov., 19, 100857 (2020); https://doi.org/10.1016/j.eti.2020.100857
- Y. Qiu, F.A. Yang and W. Lai, Popul. Environ., 40, 388 (2019); https://doi.org/10.1007/s11111-019-00317-6
- M. Sekar, T.R. Praveen Kumar, M. Selva Ganesh Kumar, R. Vaníèková and J. Maroušek, Fuel, 305, 121544 (2021); https://doi.org/10.1016/j.fuel.2021.121544
- https://learn.kaiterra.com/en/air-academy/air-pollution-solutionstechnology (accessed on-7 Oct-2021).
- A. Ahlawat, A. Wiedensohler and S.K. Mishra, Aerosol Air Qual. Res., 20, 1856 (2020); https://doi.org/10.4209/aaqr.2020.06.0302
- G. Hoek, Curr. Environ. Health Rep., 4, 450 (2017); https://doi.org/10.1007/s40572-017-0169-5
- J. Irwin, A Historical Look at the Development of Regulatory Air Quality Models for the United States Environmental Protection Agency, In: IR Quality Modeling-Theories, Methodologies, Computational Techniques, and Available Databases and Software, The EnvironComp Institute and Air & Waste Management Association, Chap. 18, vol. II, p. 18 (2005).
- K. Liao, X. Huang, H. Dang, Y. Ren, S. Zuo and C. Duan, Atmosphere, 12, 686 (2021); https://doi.org/10.3390/atmos12060686
- B. Liu, X. Yu, J. Chen, Q. Wang, Atmos. Pollut. Res., 12, 101144 (2021); https://doi.org/10.1016/j.apr.2021.101144
- M. Zhou, Y. Huang and G. Li, Environ. Sci. Pollut. Res. Int., 28, 23405 (2021); https://doi.org/10.1007/s11356-020-12164-2
- M. Arulprakasajothi, U. Chandrasekhar, K. Elangovan and D. Yuvarajan, Int. J. Ambient Energy, 41, 511 (2020); https://doi.org/10.1080/01430750.2018.1472651
- J.K. Gourav, Rekhi, P. Nagrath and R. Jain, Eds.: V. Jain, G. Chaudhary, M. Taplamacioglu and M. Agarwal, Forecasting Air Quality of Delhi Using ARIMA Model, In: Advances in Data Sciences, Security and Applications; Lecture Notes in Electrical Engineering, vol 612, Springer: Singapore (2020); https://doi.org/10.1007/978-981-15-0372-6_25
- https://www.rollingnature.com/blogs/news/spider-plant-nasa-approved-natural-air-purifier (accessed on;08-oct-2021).
- USEPA Nitrogen Oxides, (NOx), Why and How They are Controlled. Washington, DC: United States Environmental Protection Agency, Publication No. EPA-456/F-99-006R (1999).
- X. Wei, S. Lyu, Y. Yu, Z. Wang, H. Liu, D. Pan and J. Chen, Front. Plant Sci., 8, 1318 (2017); https://doi.org/10.3389/fpls.2017.01318
- X. Zhang, P. Zhou, W. Zhang, W. Zhang and Y. Wang, Open J. For., 3, 104 (2013); https://doi.org/10.4236/ojf.2013.34017
- P. Chauhan, M.S. Rawat, Int. J. Eng. Technol. Sci. Res., 4, 749 (2017).
- C. Lai, Z. Wang, L. Qin, Y. Fu, B. Li, M. Zhang, S. Liu, L. Li, H. Yi, X. Liu, X. Zhou, N. An, Z. An, X. Shi and C. Feng, Coord. Chem. Rev., 427, 213565 (2021); https://doi.org/10.1016/j.ccr.2020.213565
- M. Bufalini, Environ. Sci. Technol., 5, 685 (1971); https://doi.org/10.1021/es60055a001
- USEPA, Nitrogen Oxides (NOx), Why and How They are Controlled. Washington, DC: United States Environmental Protection Agency, Publication No. EPA-456/F-99-006R (1999).
- P. Di Carlo, W.H. Brune, M. Martinez, H. Harder, R. Lesher, X. Ren, T. Thornberry, M.A. Carroll, V. Young, P.B. Shepson, D. Riemer, E. Apel and C. Campbell, Science, 304, 722 (2004); https://doi.org/10.1126/science.1094392
- J. Hao, T. Zhu and X. Fan, Eds.: P. Pluschke and H. Schleibinger, Indoor Air Pollution and its Control in China, In: Indoor Air Pollution, Berlin; Heidelberg: Springer-Verlag, Ed: 2, pp. 1-26 (2014).
- V.V. Tran, D. Park and Y.C. Lee, Int. J. Environ. Res. Public Health, 17, 2927 (2020); https://doi.org/10.3390/ijerph17082927
- http://www.naturallivingideas.com/8-ways-to-purify-home-airnaturally/ (Accessed on-07-oct 2021).
- G. Tiwari and S.P. Singh, J. Bioremediat. Biodegrad., 5, 248 (2014); https://doi.org/10.4172/2155-6199.1000248
- Y. Gao, Y.S. Zhou, W. Xiong, M. Wang, L. Fan, H. Rabiee-Golgir, L. Jiang, W. Hou, X. Huang, L. Jiang, J.-F. Silvain and Y.F. Lu, ACS Appl. Mater. Interfaces, 6, 5924 (2014); https://doi.org/10.1021/am500870f
- Y.H.K.I.S. Gunasinghe, I.V.N. Rathnayake and M.P. Deeyamulla, Nepal J. Biotechnol., 9, 63 (2021).
- X. Zhang, B. Gao, A.E. Creamer, C. Cao and Y. Li, J. Hazard. Mater., 338, 102 (2017); https://doi.org/10.1016/j.jhazmat.2017.05.013
- Y. Tong, P.J. Mcnamara and B.K. Mayer, Environ. Sci. Water Res. Technol., 5, 821 (2019); https://doi.org/10.1039/C8EW00938D
- X. Yue, N.L. Ma, C. Sonne, R. Guan, S.S. Lam, Q.V. Le, X. Chen, Y. Yang, H. Gu, J. Rinklebe and W. Peng, J. Hazard. Mater., 405, 124 (2020); https://doi.org/10.1016/j.jhazmat.2020.124138
- H. Clewell, Regul. Toxicol. Pharmacol., 42, 3 (2005).
- E.D. Kuempel, L.M. Sweeney, J.B. Morris and A.M. Jarabek, J. Occup. Environ. Hyg., 12, S18 (2015); https://doi.org/10.1080/15459624.2015.1060328
- E.D. Kuempel, C.L. Tran, V. Castranova and A.J. Bailer, Inhal. Toxicol., 18, 717 (2006); https://doi.org/10.1080/08958370600747887
- R.F. Phalen, M.D. Hoover, M.J. Oldham and A.M. Jarabek, J. Aerosol Sci., 155, 105755 (2021); https://doi.org/10.1016/j.jaerosci.2021.105755
- S.G. Goel, S. Somwanshi, S. Mankar, B. Srimuruganandam and R. Gupta, Air Qual. Atmos. Health, 14, 1033 (2021); https://doi.org/10.1007/s11869-021-00996-x
- V. Raja, R.V. Lakshmi, C.P. Sekar, S. Chidambaram and M.A. Neelakantan, Arch. Environ. Contam. Toxicol., 80, 144 (2021); https://doi.org/10.1007/s00244-020-00795-y
- S. Tigala, A.R. Sharma and K. Sachdeva, Sci. Total Environ., 640-641, 935 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.323
- J. Madureira, K. Slezakova, A.I. Silva, B. Lage, A. Mendes, L. Aguiar, M.C. Pereira, J.P. Teixeira and C. Costa, Sci. Total Environ., 717, 137293 (2020); https://doi.org/10.1016/j.scitotenv.2020.137293
- N. Manojkumar, B. Srimuruganandam and S.M. Shiva Nagendra, Ecotoxicol. Environ. Saf., 168, 241 (2019); https://doi.org/10.1016/j.ecoenv.2018.10.091
- Y. Deepthi, S.M. Shiva Nagendra and S. Gummadi, Sci. Total Environ., 650, 616 (2019); https://doi.org/10.1016/j.scitotenv.2018.08.381
References
N. Agarwal, C.S. Meena, B.P. Raj, L. Saini, N. Gopalakrishnan, A. Kumar, N.B. Balam, T. Alam, N.R. Kapoor and V. Aggarwal, Sustain Cities Soc., 70, 102942 (2021); https://doi.org/10.1016/j.scs.2021.102942
T. Ahmed, P. Kumar and L. Mottet, Renew. Sustain. Energy Rev., 138, 110669 (2021); https://doi.org/10.1016/j.rser.2020.110669
S. Sonwani, Source Apportionment of Polycyclic Aromatic Hydrocarbons in Atmosphere of South Delhi, India; 2nd International Conference on Atmospheric Dust - DUST2016, ProScience Conference Proceedings of ScientEvents, Italy, vol. 3, pp. 111-116 (2016).
D. Fowler, P. Brimblecombe, J. Burrows, M.R. Heal, P. Grennfelt, D.S. Stevenson, A. Jowett, E. Nemitz, M. Coyle, X. Liu, Y. Chang, G.W. Fuller, M.A. Sutton, Z. Klimont, M.H. Unsworth and M. Vieno, Phil. Trans. R. Soc. A, 378, 20190314 (2020); https://doi.org/10.1098/rsta.2019.0314
A. Eliassen, J. Saltbones, F. Stordal, H. Oystein, I. Isaksen and F. Stordal, J. APPL. METEORAL, 21, 1645 (1982); https://doi.org/10.1175/1520-0450(1982)021<1645:ALLRTM> 2.0.CO;2
A.K. Upadhyay, A. Singh, K. Kumar and A. Singh, BMC Public Health, 15, 300 (2015); https://doi.org/10.1186/s12889-015-1631-7
A.J. Lawrence, T. Khan and I. Azad, Global NEST J., 22, 28 (2019); https://doi.org/10.30955/gnj.003105
https://www.who.int/ceh/capacity/Indoor_Air_Pollution.pdf (accessed on 7-oct-2021).
J.P.D. Abbatt and C. Wang, Environ. Sci. Process. Impacts, 22, 25 (2020); https://doi.org/10.1039/C9EM00386J
M. Li, F. Bao, Y. Zhang, W. Song, C. Chen and J. Zhao, Proc. Natl. Acad. Sci. USA, 115, 7717 (2018); https://doi.org/10.1073/pnas.1804481115
M.Y. Wang, Y.W. Lu, F. Wu, X.J. Zhang and C.X. Yang, Procedia Eng., 121, 521 (2015); https://doi.org/10.1016/j.proeng.2015.08.1023
https://www.nap.edu/catalog/1889/rethinking-the-ozone-problem-inurban-and-regional-air pollution (accessed on-8-Oct-2021).
J.N. Pitts Jr., H.W. Biermann, E.C. Tuazon, M. Green, W.D. Long and A.M. Winer, JAPCA, 39, 1344 (1989); https://doi.org/10.1080/08940630.1989.10466629
C.W. Spicer, R.W. Coutant, G.F. Ward, D.W. Joseph, A.J. Gaynor and I.H. Billick, Environ. Int., 15, 643 (1989); https://doi.org/10.1016/0160-4120(89)90087-1
J. Barbara, F. Pitts and J.N. Pitts, Indoor Air Pollution: Sources, Levels, Chemistry and Fates, In: Chemistry of the Upper and Lower Atmosphere, Academic Press, Chap. 15, pp. 844-870 (2000).
C.J. Weschler, H.C. Shields and D.V. Naik, Environ. Sci. Technol., 28, 2120 (1994); https://doi.org/10.1021/es00061a021
C.J. Weschler, M. Brauer and P. Koutrakis, Environ. Sci. Technol., 26, 179 (1992); https://doi.org/10.1021/es00025a022
J. Zhang, W.E. Wilson and P.J. Lioy, Environ. Sci. Technol., 28, 1975 (1994); https://doi.org/10.1021/es00060a031
R. Reiss, P.B. Ryan, P. Koutrakis and S.J. Tibbetts, Environ. Sci. Technol., 29, 1906 (1995); https://doi.org/10.1021/es00008a007
J. Zhang, W.E. Wilson and P.J. Lioy, J. Expo. Anal. Environ. Epidemiol., 4, 25 (1994).
T. Grontoft and M. Raychaudhuri, Atmos. Environ., 38, 533 (2004); https://doi.org/10.1016/j.atmosenv.2003.10.010
E. Gall, E. Darling, J.A. Siegel, G.C. Morrison and R.L. Corsi, Atmos. Environ., 77, 910 (2013); https://doi.org/10.1016/j.atmosenv.2013.06.014
L.S. Pandrangi and G.C. Morrison, Atmos. Environ., 42, 5079 (2008); https://doi.org/10.1016/j.atmosenv.2008.02.009
S. Zhou, M.W. Forbes, Y. Katrib and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 3, 170 (2016); https://doi.org/10.1021/acs.estlett.6b00086
D.G. Poppendieck, H.F. Hubbard, C.J. Weschler and R.L. Corsi, Atmos. Environ., 41, 7614 (2007); https://doi.org/10.1016/j.atmosenv.2007.05.049.
H. Wang and G. Morrison, Indoor Air, 20, 224 (2010); https://doi.org/10.1111/j.1600 0668.2010.00648.x
D. Rim, E.T. Gall, R.L. Maddalena and W.W. Nazaroff, Atmos. Environ., 125, 15 (2016); https://doi.org/10.1016/j.atmosenv.2015.10.093
E.T. Gall, R.L. Corsi and J.A. Siegel, Atmos. Environ., 45, 3338 (2011); https://doi.org/10.1016/j.atmosenv.2011.03.032
F. Hanisch and J.N. Crowley, Atmos. Chem. Phys., 3, 119 (2003); https://doi.org/10.5194/acp-3-119-2003
A. Wisthaler and C.J. Weschler, Proc. Natl. Acad. Sci. USA, 107, 6568 (2010); https://doi.org/10.1073/pnas.0904498106
T. Salthammer and E. Uhde, Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation, Wiley, Ed.: 2 (2009); https://doi.org/10.1002/9783527628889
J.R. Wells, G.C. Morrison, B.K. Coleman, C. Spicer and S.W. Dean, J. ASTM Int., 5, 101629 (2008); https://doi.org/10.1520/JAI101629
J. Gumulka and L.L. Smith, J. Am. Chem. Soc., 105, 1972 (1983); https://doi.org/10.1021/ja00345a052
J. Fick, L. Pommer, A. Astrand, R. Ostin, C. Nilsson and B. Andersson, Atmos. Environ., 39, 6315 (2005); https://doi.org/10.1016/j.atmosenv.2005.07.013
S. Shu and G.C. Morrison, Atmos. Environ., 47, 421 (2012); https://doi.org/10.1016/j.atmosenv.2011.10.068
W.-T. Chan and I.P. Hamilton, J. Chem. Phys., 118, 1688 (2003); https://doi.org/10.1063/1.1531104
R. Criegee, Angew. Chem. Int. Ed. Engl., 14, 745 (1975); https://doi.org/10.1002/anie.197507451
J. Kroll, N. Donahue, V. Cee, K. Demerjian and J. Anderson, J. Am. Chem. Soc., 124, 8518 (2002); https://doi.org/10.1021/ja0266060
Z. Zhou, S. Zhou and J.P.D. Abbatt, Environ. Sci. Technol., 53, 12467 (2019); https://doi.org/10.1021/acs.est.9b04460
C. Lai, B. Finlayson-Pitts and W. Willis, Chem. Res. Toxicol., 3, 517 (1990); https://doi.org/10.1021/tx00018a005
D. Zhang and R. Zhang, J. Am. Chem. Soc., 124, 2692 (2002); https://doi.org/10.1021/ja011518l
N. Heine, F.A. Houle and K.R. Wilson, Environ. Sci. Technol., 51, 13740 (2017); https://doi.org/10.1021/acs.est.7b04197
R. Zhao, C.M. Kenseth, Y. Huang, N.F. Dalleska, X.M. Kuang, J. Chen, S.E. Paulson and J.H. Seinfeld, J. Phys. Chem. A, 122, 5190 (2018); https://doi.org/10.1021/acs.jpca.8b02195
P.S.J. Lakey, G.C. Morrison, Y. Won, K.M. Parry, M. von Domaros, D.J. Tobias, D. Rim and M. Shiraiwa, Commun. Chem., 2, 56 (2019); https://doi.org/10.1038/s42004-019-0159-7
H. Destaillats, B.C. Singer, S.K. Lee and L.A. Gundel, Environ. Sci. Technol., 40, 1799 (2006); https://doi.org/10.1021/es050914r
B.T. Mmereki and D.J. Donaldson, J. Phys. Chem. A, 107, 11038 (2003); https://doi.org/10.1021/jp036119m
S.M. Zhou, M. Shiraiwa, R.D. McWhinney, U. Poschl and J.P.D. Abbatt, Faraday Discuss., 165, 391 (2013); https://doi.org/10.1039/C3FD00030C
U. Poschl, T. Letzel, C. Schauer and R. Niessner, J. Phys. Chem. A, 105, 4029 (2001); https://doi.org/10.1021/jp004137n
S. Zhou, L.W.Y. Yeung, M.W. Forbes, S. Mabury and J.P.D. Abbatt, Environ. Sci. Process. Impacts, 19, 1292 (2017); https://doi.org/10.1039/C7EM00181A
P. Sotero and R. Arce, J. Photochem. Photobiol. Chem., 199, 14 (2008); https://doi.org/10.1016/j.jphotochem.2008.04.011
T. Salthammer, A. Bednarek, F. Fuhrmann, R. Funaki and S. Tanabe, J. Photochem. Photobiol. Chem., 152, 1 (2002); https://doi.org/10.1016/S1010-6030(02)00212-5
A. Gandolfo, V. Bartolomei, E. Gomez Alvarez, S. Tlili, S. Gligorovski, J. Kleffmann and H. Wortham, Appl. Catal. B, 166-167, 84 (2015); https://doi.org/10.1016/j.apcatb.2014.11.011
A. Gandolfo, L. Rouyer, H. Wortham and S. Gligorovski, Appl. Catal. B, 209, 429 (2017); https://doi.org/10.1016/j.apcatb.2017.03.021
H. Schwartz-Narbonne, S.H. Jones and D.J. Donaldson, Environ. Sci. Technol. Lett., 6, 92 (2019); https://doi.org/10.1021/acs.estlett.8b00685
T. Salthammer and F. Fuhrmann, Environ. Sci. Technol., 41, 6573 (2007); https://doi.org/10.1021/es070057m
E. Uhde and T. Salthammer, Atmos. Environ., 41, 3111 (2007); https://doi.org/10.1016/j.atmosenv.2006.05.082
S. Chino, S. Kato, J. Seo and Y. Ataka, Build. Environ., 44, 1337 (2009); https://doi.org/10.1016/j.buildenv.2008.07.003
A. Bope, S.R. Haines, B. Hegarty, C.J. Weschler, J. Peccia and K.C. Dannemiller, Environ. Sci. Process. Impacts, 21, 1268 (2019); https://doi.org/10.1039/C9EM00050J
T. Salthammer, S. Mentese and R. Marutzky, Chem. Rev., 110, 2536 (2010); https://doi.org/10.1021/cr800399g
P. Wolkoff and S.K. Kjaergaard, Environ. Int., 33, 850 (2007); https://doi.org/10.1016/j.envint.2007.04.004
J. Qiu, S. Ishizuka, K. Tonokura, A.J. Colussi and S. Enami, J. Phys. Chem. A, 122, 7910 (2018); https://doi.org/10.1021/acs.jpca.8b06914
S. Zhou, S. Joudan, M.W. Forbes, Z. Zhou and J.P.D. Abbatt, Environ. Sci. Technol. Lett., 6, 243 (2019); https://doi.org/10.1021/acs.estlett.9b00165
B.J. Finlayson-Pitts and J.N. Pitts, Chemistry of the Lower and Upper Atmosphere, Academic Press: New York (2000).
A. Botle, R.K. Singhal, H. Basu, M. v and J. Masih, Environ. Technol. Innov., 19, 100857 (2020); https://doi.org/10.1016/j.eti.2020.100857
Y. Qiu, F.A. Yang and W. Lai, Popul. Environ., 40, 388 (2019); https://doi.org/10.1007/s11111-019-00317-6
M. Sekar, T.R. Praveen Kumar, M. Selva Ganesh Kumar, R. Vaníèková and J. Maroušek, Fuel, 305, 121544 (2021); https://doi.org/10.1016/j.fuel.2021.121544
https://learn.kaiterra.com/en/air-academy/air-pollution-solutionstechnology (accessed on-7 Oct-2021).
A. Ahlawat, A. Wiedensohler and S.K. Mishra, Aerosol Air Qual. Res., 20, 1856 (2020); https://doi.org/10.4209/aaqr.2020.06.0302
G. Hoek, Curr. Environ. Health Rep., 4, 450 (2017); https://doi.org/10.1007/s40572-017-0169-5
J. Irwin, A Historical Look at the Development of Regulatory Air Quality Models for the United States Environmental Protection Agency, In: IR Quality Modeling-Theories, Methodologies, Computational Techniques, and Available Databases and Software, The EnvironComp Institute and Air & Waste Management Association, Chap. 18, vol. II, p. 18 (2005).
K. Liao, X. Huang, H. Dang, Y. Ren, S. Zuo and C. Duan, Atmosphere, 12, 686 (2021); https://doi.org/10.3390/atmos12060686
B. Liu, X. Yu, J. Chen, Q. Wang, Atmos. Pollut. Res., 12, 101144 (2021); https://doi.org/10.1016/j.apr.2021.101144
M. Zhou, Y. Huang and G. Li, Environ. Sci. Pollut. Res. Int., 28, 23405 (2021); https://doi.org/10.1007/s11356-020-12164-2
M. Arulprakasajothi, U. Chandrasekhar, K. Elangovan and D. Yuvarajan, Int. J. Ambient Energy, 41, 511 (2020); https://doi.org/10.1080/01430750.2018.1472651
J.K. Gourav, Rekhi, P. Nagrath and R. Jain, Eds.: V. Jain, G. Chaudhary, M. Taplamacioglu and M. Agarwal, Forecasting Air Quality of Delhi Using ARIMA Model, In: Advances in Data Sciences, Security and Applications; Lecture Notes in Electrical Engineering, vol 612, Springer: Singapore (2020); https://doi.org/10.1007/978-981-15-0372-6_25
https://www.rollingnature.com/blogs/news/spider-plant-nasa-approved-natural-air-purifier (accessed on;08-oct-2021).
USEPA Nitrogen Oxides, (NOx), Why and How They are Controlled. Washington, DC: United States Environmental Protection Agency, Publication No. EPA-456/F-99-006R (1999).
X. Wei, S. Lyu, Y. Yu, Z. Wang, H. Liu, D. Pan and J. Chen, Front. Plant Sci., 8, 1318 (2017); https://doi.org/10.3389/fpls.2017.01318
X. Zhang, P. Zhou, W. Zhang, W. Zhang and Y. Wang, Open J. For., 3, 104 (2013); https://doi.org/10.4236/ojf.2013.34017
P. Chauhan, M.S. Rawat, Int. J. Eng. Technol. Sci. Res., 4, 749 (2017).
C. Lai, Z. Wang, L. Qin, Y. Fu, B. Li, M. Zhang, S. Liu, L. Li, H. Yi, X. Liu, X. Zhou, N. An, Z. An, X. Shi and C. Feng, Coord. Chem. Rev., 427, 213565 (2021); https://doi.org/10.1016/j.ccr.2020.213565
M. Bufalini, Environ. Sci. Technol., 5, 685 (1971); https://doi.org/10.1021/es60055a001
USEPA, Nitrogen Oxides (NOx), Why and How They are Controlled. Washington, DC: United States Environmental Protection Agency, Publication No. EPA-456/F-99-006R (1999).
P. Di Carlo, W.H. Brune, M. Martinez, H. Harder, R. Lesher, X. Ren, T. Thornberry, M.A. Carroll, V. Young, P.B. Shepson, D. Riemer, E. Apel and C. Campbell, Science, 304, 722 (2004); https://doi.org/10.1126/science.1094392
J. Hao, T. Zhu and X. Fan, Eds.: P. Pluschke and H. Schleibinger, Indoor Air Pollution and its Control in China, In: Indoor Air Pollution, Berlin; Heidelberg: Springer-Verlag, Ed: 2, pp. 1-26 (2014).
V.V. Tran, D. Park and Y.C. Lee, Int. J. Environ. Res. Public Health, 17, 2927 (2020); https://doi.org/10.3390/ijerph17082927
http://www.naturallivingideas.com/8-ways-to-purify-home-airnaturally/ (Accessed on-07-oct 2021).
G. Tiwari and S.P. Singh, J. Bioremediat. Biodegrad., 5, 248 (2014); https://doi.org/10.4172/2155-6199.1000248
Y. Gao, Y.S. Zhou, W. Xiong, M. Wang, L. Fan, H. Rabiee-Golgir, L. Jiang, W. Hou, X. Huang, L. Jiang, J.-F. Silvain and Y.F. Lu, ACS Appl. Mater. Interfaces, 6, 5924 (2014); https://doi.org/10.1021/am500870f
Y.H.K.I.S. Gunasinghe, I.V.N. Rathnayake and M.P. Deeyamulla, Nepal J. Biotechnol., 9, 63 (2021).
X. Zhang, B. Gao, A.E. Creamer, C. Cao and Y. Li, J. Hazard. Mater., 338, 102 (2017); https://doi.org/10.1016/j.jhazmat.2017.05.013
Y. Tong, P.J. Mcnamara and B.K. Mayer, Environ. Sci. Water Res. Technol., 5, 821 (2019); https://doi.org/10.1039/C8EW00938D
X. Yue, N.L. Ma, C. Sonne, R. Guan, S.S. Lam, Q.V. Le, X. Chen, Y. Yang, H. Gu, J. Rinklebe and W. Peng, J. Hazard. Mater., 405, 124 (2020); https://doi.org/10.1016/j.jhazmat.2020.124138
H. Clewell, Regul. Toxicol. Pharmacol., 42, 3 (2005).
E.D. Kuempel, L.M. Sweeney, J.B. Morris and A.M. Jarabek, J. Occup. Environ. Hyg., 12, S18 (2015); https://doi.org/10.1080/15459624.2015.1060328
E.D. Kuempel, C.L. Tran, V. Castranova and A.J. Bailer, Inhal. Toxicol., 18, 717 (2006); https://doi.org/10.1080/08958370600747887
R.F. Phalen, M.D. Hoover, M.J. Oldham and A.M. Jarabek, J. Aerosol Sci., 155, 105755 (2021); https://doi.org/10.1016/j.jaerosci.2021.105755
S.G. Goel, S. Somwanshi, S. Mankar, B. Srimuruganandam and R. Gupta, Air Qual. Atmos. Health, 14, 1033 (2021); https://doi.org/10.1007/s11869-021-00996-x
V. Raja, R.V. Lakshmi, C.P. Sekar, S. Chidambaram and M.A. Neelakantan, Arch. Environ. Contam. Toxicol., 80, 144 (2021); https://doi.org/10.1007/s00244-020-00795-y
S. Tigala, A.R. Sharma and K. Sachdeva, Sci. Total Environ., 640-641, 935 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.323
J. Madureira, K. Slezakova, A.I. Silva, B. Lage, A. Mendes, L. Aguiar, M.C. Pereira, J.P. Teixeira and C. Costa, Sci. Total Environ., 717, 137293 (2020); https://doi.org/10.1016/j.scitotenv.2020.137293
N. Manojkumar, B. Srimuruganandam and S.M. Shiva Nagendra, Ecotoxicol. Environ. Saf., 168, 241 (2019); https://doi.org/10.1016/j.ecoenv.2018.10.091
Y. Deepthi, S.M. Shiva Nagendra and S. Gummadi, Sci. Total Environ., 650, 616 (2019); https://doi.org/10.1016/j.scitotenv.2018.08.381