Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Biological Activity of ONO Donor Schiff Base and its Metal Complexes
Corresponding Author(s) : K. Ramakrishna Reddy
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
A new Schiff base ligand (E)-2-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)-N-(5-methyl-3-phenyl-1H-indol-2-yl)hydrazine carboxamide (L) (3) was synthesized by the reaction of N-(5-methyl-3-phenyl-1H-indol-2-yl)hydrazinecarboxamide (1) and 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde (2). The Cu(II), Co(II), Ni(II) and Zn(II) metal complexes (4a-d) were synthesized and its structural elucidation was done by different spectral techniques. The Schiff base (3) behaves as ONO donor ligand and forms the complexes of the sort [M(L)(Cl)(H2O)2] for Cu(II) (4a) and Zn(II) (4d) and [M(L)2] for Co(II) (4b) and Ni(II) (4c). Compounds (3) and (4a-d) were tested in vitro for antimicrobial action, cytotoxicity property against Artemia salina and anti-tuberculosis assay against Mycobacterium tuberculosis (ATCC 25177). The metal complexes showed very good biological activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.P. Prajapati and H.D. Patel, Synth. Commun., 49, 2767 (2019); https://doi.org/10.1080/00397911.2019.1649432
- P. Mahadevi and S. Sumathi, Synth. Commun., 50, 2237 (2020); https://doi.org/10.1080/00397911.2020.1748200
- M. Ghiasi, P. Shahabi and C.T. Supuran, Bioorg. Med. Chem., 44, 116276 (2021); https://doi.org/10.1016/j.bmc.2021.116276
- N.G. Yernale, B.S. Matada, G.B. Vibhutimath, V.D. Biradar, M.R. Karekal, M.D. Udayagiri and M.B. Hire Mathada, J. Mol. Struct., 1248, 131410 (2022); https://doi.org/10.1016/j.molstruc.2021.131410
- S. Kumar and Ritika, Futur. J. Pharm. Sci., 6, 121 (2020); https://doi.org/10.1186/s43094-020-00141-y
- N.K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C.H. Kim, A.K. Verma and E.H. Choi, Molecules, 18, 6620 (2013); https://doi.org/10.3390/molecules18066620
- B.S. Mathada, N.G. Yernale, J.N. Basha and J. Badiger, Tetrahedron Lett., 153, 458 (2021); https://doi.org/10.1016/j.tetlet.2021.153458
- T. Kawasaki and K. Higuchi, Nat. Prod. Rep., 22, 761 (2005); https://doi.org/10.1039/b502162f
- V.S.V. Satyanarayana, P. Sreevani, A. Sivakumar and V. Vijayakumar, ARKIVOC, 221 (2008); https://doi.org/10.3998/ark.5550190.0009.h21
- B.S.D. Mathada and M.B.H. Mathada, Chem. Pharm. Bull., 57, 557 (2009); https://doi.org/10.1248/cpb.57.557
- A. Kulkarni, P.G. Avaji, G.B. Bagihalli, S.A. Patil and P.S. Badami, J. Coord. Chem., 62, 481 (2009); https://doi.org/10.1080/00958970802226387
- G.H. Jeeffery, J Bassett, J Mendham and R.C. Denney, Vogel’s Qualitative Inorganic Analysis, Ed.: 5 (1989).
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- I. Smith, Clin. Microbiol. Rev., 16, 463 (2003); https://doi.org/10.1128/CMR.16.3.463-496.2003
- B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols and J.L. McLaughlin, Planta Med., 45, 31 (1982); https://doi.org/10.1055/s-2007-971236
- M. Hanif and Z.H. Chohan, Appl. Organomet. Chem., 27, 36 (2013); https://doi.org/10.1002/aoc.2936
- N.G. Yernale and M.B.H. Mathada, J. Mol. Struct., 1220, 128659 (2020); https://doi.org/10.1016/j.molstruc.2020.128659
- D.J. Finney, Probit Analysis, Cambridge University Press: New York Ed.: 3, pp 333 (1971)
- H. Hanibah, A. Ahmad and N.H. Hassan, Electrochim. Acta, 147, 758 (2014); https://doi.org/10.1016/j.electacta.2014.09.156
- I. Ott, Adv. Inorg. Chem., 75, 121 (2020); https://doi.org/10.1016/bs.adioch.2019.10.008.
- M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater. Today Chem., 14, 100195 (2019); https://doi.org/10.1016/j.mtchem.2019.100195
- P. Ghanghas, A. Choudhary, D. Kumar and K. Poonia, Inorg. Chem. Commun., 130, 108710 (2021); https://doi.org/10.1016/j.inoche.2021.108710
- N.G. Yernale and B.H.M. Mruthyunjayaswamy, Indian J. Pharm. Educ. Res., 52, 255 (2018).
- H. Liu, H. Wang, F. Gao, D. Niu and Z. Lu, J. Coord. Chem., 60, 2671 (2007); https://doi.org/10.1080/00958970701302404
- R.A. Rai, J. Inorg. Nucl. Chem., 42, 450 (1980); https://doi.org/10.1016/0022-1902(80)80023-6
- A.E. Underhill and D.E. Billing, Nature, 210, 834 (1966); https://doi.org/10.1038/210834a0
- B.P. Baranwal and T. Gupta, Synth. React. Inorg. Met.-Org. Chem., 34, 1737 (2004); https://doi.org/10.1081/SIM-200030186
- D.N. Satyanarayana, Electronic Absorption Spectroscopy and Related Technique, University Press India Limited: New Delhi (2001).
- D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 24, 795 (2009); https://doi.org/10.1080/14756360802397179
- G.Y. Nagesh, K. Mahendra Raj and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1079, 423 (2015); https://doi.org/10.1016/j.molstruc.2014.09.013
- T.R. Rao and A. Prasad, Synth. React. Inorg. Met.-Org. Chem., 35, 299 (2005); https://doi.org/10.1081/SIM-200055245
- G.Y. Nagesh and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1085, 198 (2015); https://doi.org/10.1016/j.molstruc.2014.12.058
- S.A. Patil, V.H. Naik, A.D. Kulkarni and P.S. Badami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 347 (2010); https://doi.org/10.1016/j.saa.2009.10.039
- K.N. Thimmaiah, W.D. Lloyd and G.T. Chandrappa, Inorg. Chim. Acta, 106, 81 (1985); https://doi.org/10.1016/S0020-1693(00)82252-5
References
N.P. Prajapati and H.D. Patel, Synth. Commun., 49, 2767 (2019); https://doi.org/10.1080/00397911.2019.1649432
P. Mahadevi and S. Sumathi, Synth. Commun., 50, 2237 (2020); https://doi.org/10.1080/00397911.2020.1748200
M. Ghiasi, P. Shahabi and C.T. Supuran, Bioorg. Med. Chem., 44, 116276 (2021); https://doi.org/10.1016/j.bmc.2021.116276
N.G. Yernale, B.S. Matada, G.B. Vibhutimath, V.D. Biradar, M.R. Karekal, M.D. Udayagiri and M.B. Hire Mathada, J. Mol. Struct., 1248, 131410 (2022); https://doi.org/10.1016/j.molstruc.2021.131410
S. Kumar and Ritika, Futur. J. Pharm. Sci., 6, 121 (2020); https://doi.org/10.1186/s43094-020-00141-y
N.K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C.H. Kim, A.K. Verma and E.H. Choi, Molecules, 18, 6620 (2013); https://doi.org/10.3390/molecules18066620
B.S. Mathada, N.G. Yernale, J.N. Basha and J. Badiger, Tetrahedron Lett., 153, 458 (2021); https://doi.org/10.1016/j.tetlet.2021.153458
T. Kawasaki and K. Higuchi, Nat. Prod. Rep., 22, 761 (2005); https://doi.org/10.1039/b502162f
V.S.V. Satyanarayana, P. Sreevani, A. Sivakumar and V. Vijayakumar, ARKIVOC, 221 (2008); https://doi.org/10.3998/ark.5550190.0009.h21
B.S.D. Mathada and M.B.H. Mathada, Chem. Pharm. Bull., 57, 557 (2009); https://doi.org/10.1248/cpb.57.557
A. Kulkarni, P.G. Avaji, G.B. Bagihalli, S.A. Patil and P.S. Badami, J. Coord. Chem., 62, 481 (2009); https://doi.org/10.1080/00958970802226387
G.H. Jeeffery, J Bassett, J Mendham and R.C. Denney, Vogel’s Qualitative Inorganic Analysis, Ed.: 5 (1989).
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
I. Smith, Clin. Microbiol. Rev., 16, 463 (2003); https://doi.org/10.1128/CMR.16.3.463-496.2003
B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols and J.L. McLaughlin, Planta Med., 45, 31 (1982); https://doi.org/10.1055/s-2007-971236
M. Hanif and Z.H. Chohan, Appl. Organomet. Chem., 27, 36 (2013); https://doi.org/10.1002/aoc.2936
N.G. Yernale and M.B.H. Mathada, J. Mol. Struct., 1220, 128659 (2020); https://doi.org/10.1016/j.molstruc.2020.128659
D.J. Finney, Probit Analysis, Cambridge University Press: New York Ed.: 3, pp 333 (1971)
H. Hanibah, A. Ahmad and N.H. Hassan, Electrochim. Acta, 147, 758 (2014); https://doi.org/10.1016/j.electacta.2014.09.156
I. Ott, Adv. Inorg. Chem., 75, 121 (2020); https://doi.org/10.1016/bs.adioch.2019.10.008.
M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater. Today Chem., 14, 100195 (2019); https://doi.org/10.1016/j.mtchem.2019.100195
P. Ghanghas, A. Choudhary, D. Kumar and K. Poonia, Inorg. Chem. Commun., 130, 108710 (2021); https://doi.org/10.1016/j.inoche.2021.108710
N.G. Yernale and B.H.M. Mruthyunjayaswamy, Indian J. Pharm. Educ. Res., 52, 255 (2018).
H. Liu, H. Wang, F. Gao, D. Niu and Z. Lu, J. Coord. Chem., 60, 2671 (2007); https://doi.org/10.1080/00958970701302404
R.A. Rai, J. Inorg. Nucl. Chem., 42, 450 (1980); https://doi.org/10.1016/0022-1902(80)80023-6
A.E. Underhill and D.E. Billing, Nature, 210, 834 (1966); https://doi.org/10.1038/210834a0
B.P. Baranwal and T. Gupta, Synth. React. Inorg. Met.-Org. Chem., 34, 1737 (2004); https://doi.org/10.1081/SIM-200030186
D.N. Satyanarayana, Electronic Absorption Spectroscopy and Related Technique, University Press India Limited: New Delhi (2001).
D.P. Singh, K. Kumar, S.S. Dhiman and J. Sharma, J. Enzyme Inhib. Med. Chem., 24, 795 (2009); https://doi.org/10.1080/14756360802397179
G.Y. Nagesh, K. Mahendra Raj and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1079, 423 (2015); https://doi.org/10.1016/j.molstruc.2014.09.013
T.R. Rao and A. Prasad, Synth. React. Inorg. Met.-Org. Chem., 35, 299 (2005); https://doi.org/10.1081/SIM-200055245
G.Y. Nagesh and B.H.M. Mruthyunjayaswamy, J. Mol. Struct., 1085, 198 (2015); https://doi.org/10.1016/j.molstruc.2014.12.058
S.A. Patil, V.H. Naik, A.D. Kulkarni and P.S. Badami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 347 (2010); https://doi.org/10.1016/j.saa.2009.10.039
K.N. Thimmaiah, W.D. Lloyd and G.T. Chandrappa, Inorg. Chim. Acta, 106, 81 (1985); https://doi.org/10.1016/S0020-1693(00)82252-5