Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Rhodamine B and Malachite Green by Cobalt Sulfide Nanoparticles
Corresponding Author(s) : Gunjan Chauhan
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
Present study reports the simple and cost effective thermolytic method for the synthesis of cobalt sulphide nanoparticles (CoS NPs). The PXRD spectrum of cobalt sulphide (CdS) nanoparticles exhibited four peaks indexed to (100), (101), (102) and (110) crystal planes. The average particle size observed from DLS and PXRD was in the range 4.81-12.20 nm. A blue shift in band gap was observed from UV-visible spectra. The FESEM and TEM studies revealed that cobalt sulfide nanoparticles are of cubic and rectangle shapes. FTIR spectra of hexadecylamine (HDA) capped CoS NPs exhibited ν(N-H) absorption around 3350-3240 cm–1. The stretching frequency due to ν(Co-S) appeared in the region 334-332 cm–1. Proton NMR (1H) spectra of CoS NPs showed signals at nearly same positions as in case of capping agent, suggesting its capping nature. ESI-MS analyses of cobalt sulphide nanoparticles displayed peak at m/z = 124.93 corresponding to the [CoS2]+ ion. Thermogravimetric curves showed single step decomposition corresponding to 84.28% weight loss and 15.72% as final residue due to cobalt oxide. The degradation rate of rhodamine B and malachite green dyes after irradiating with sunlight showed 92-94% degradation while irradiated with UV-light of 4.8 eV show much slower degradation rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Yu, J.X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am. Chem. Soc., 136, 8839 (2014); https://doi.org/10.1021/ja5044787
- J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res., 46, 1900 (2013); https://doi.org/10.1021/ar300227e
- J.R. Ran, J. Zhang, J.G. Yu, M. Jaroniec and S.Z. Qiao, Chem. Soc. Rev., 43, 7787 (2014); https://doi.org/10.1039/C3CS60425J
- V.K. Gupta and Suhas, J. Environ. Manage., 90, 2313 (2009); https://doi.org/10.1016/j.jenvman.2008.11.017
- V.K. Gupta, P.J.M. Carrott, M.M.L. Ribeiro Carrott and Suhas, Crit. Rev. Environ. Sci. Technol., 39, 783 (2009); https://doi.org/10.1080/10643380801977610
- X. Wang, W. Bi, P. Zhai, X. Wang, H. Li, G. Mailhot and W. Dong, Appl. Surf. Sci., 360, 240 (2016); https://doi.org/10.1016/j.apsusc.2015.10.229
- Y. Sohn, W. Huang and F. Taghipour, Appl. Surf. Sci., 396, 1696 (2017); https://doi.org/10.1016/j.apsusc.2016.11.240
- R.A. He, S.W. Cao and J.G. Yu, Wuli Huaxue Xuebao, 32, 2841 (2016); https://doi.org/10.3866/PKU.WHXB201611021
- Q. Huang, J.G. Yu, S.W. Cao, C. Cui and B. Cheng, Appl. Surf. Sci., 358, 350 (2015); https://doi.org/10.1016/j.apsusc.2015.07.082
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
- Z. Ni, Y. Sun, Y. Zhang and F. Dong, Appl. Surf. Sci., 365, 314 (2016); https://doi.org/10.1016/j.apsusc.2015.12.231
- S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, J. Appl. Catal. Environ. Biol., 57, 109 (2005); https://doi.org/10.1016/j.apcatb.2004.10.015
- W. Panpa, P. Sujaridworakun and S. Jinawath, Appl. Catal. B, 80, 271 (2008); https://doi.org/10.1016/j.apcatb.2007.11.029
- C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi and H. Tamiaki, Thin Solid Films, 516, 5881 (2008); https://doi.org/10.1016/j.tsf.2007.10.050
- J.X. Low, B. Cheng and J.G. Yu, Appl. Surf. Sci., 392, 658 (2017); https://doi.org/10.1016/j.apsusc.2016.09.093
- S.W. Cao, J.X. Low, J.G. Yu and M. Jaroniec, Adv. Mater., 27, 2150 (2015); https://doi.org/10.1002/adma.201500033
- W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang and S.M. Chen, RSC Adv., 5, 101214 (2015); https://doi.org/10.1039/C5RA18302B.
- A. Taha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 1373 (2003); https://doi.org/10.1016/S1386 1425(02)00337-2
- K. Dai, H. Chen, T. Peng, D. Ke and H. Yi, Chemosphere, 69, 1361 (2007); https://doi.org/10.1016/j.chemosphere.2007.05.021
- Y. Liu, X. Chen, J. Li and C. Burda, Chemosphere, 61, 11 (2005); https://doi.org/10.1016/j.chemosphere.2005.03.069
- X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang and J.J. Zhu, J. Cryst. Growth, 252, 593 (2003); https://doi.org/10.1016/S0022-0248(03)01030-3
- C. Wu, J.B. Shi, C.J. Chen, Y.C. Chen, Y.T. Lin, P.F. Wu and S.Y. Wei, Mater. Lett., 62, 1074 (2008); https://doi.org/10.1016/j.matlet.2007.07.046
- R.S. Mane and C.D. Lokhande, Mater. Chem. Phys., 65, 1 (2000); https://doi.org/10.1016/S0254-0584(00)00217-0
- M. Xu, H. Niu, J. Huang, J. Song, C. Mao, S. Zhang, C. Zhu and C. Chen, Appl. Surf. Sci., 351, 374 (2015); https://doi.org/10.1016/j.apsusc.2015.05.158
- M. Wang, A.M. Anghel, B. Marsan, N.L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009); https://doi.org/10.1021/ja905970y
- X. Fang, T. Song, R. Liu and B. Sun, J. Phys. Chem. C, 118, 20238 (2014); https://doi.org/10.1021/jp506345a
- Z. Yu, J. Meng, J. Xiao, Y. Li and Y. Li, Int. J. Hydrogen Energy, 39, 15387 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.165
- S. Kong, Z. Jin, H. Liu and Y. Wang, J. Phys. Chem. C, 118, 25355 (2014); https://doi.org/10.1021/jp508698q
- D. Ayodhya, M. Venkatesham, A. Santoshi kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
- N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, G. Bahmanrokh, A. Abedini, M. Navasery and P. Vaziri, Int. J. Mol. Sci., 13, 12242 (2012); https://doi.org/10.3390/ijms131012242
- S. Chin, E. Park, M. Kim and J. Jurng, Powder Technol., 201, 171 (2010); https://doi.org/10.1016/j.powtec.2010.03.034
- M. Asilturk, F. Sayilkan, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu and E. Arpac, J. Hazard. Mater. B, 129, 164 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.027
- S.S. Arbuj, R.R. Hawaldar, U.P. Mulik, B.N. Wani, D.P. Amalnerkar and S.B. Waghmode, Mater. Sci. Eng. B, 168, 90 (2010); https://doi.org/10.1016/j.mseb.2009.11.010
- S. Dafare, P.S. Deshpande and R.S. Bhavsar, Indian J. Chem. Technol., 20, 406 (2013).
- S. Bagwasi, B. Tian, J. Zhang and M. Nasir, Chem. Eng. J., 217, 108 (2013); https://doi.org/10.1016/j.cej.2012.11.080
- Y. Gu, M. Xing and J. Zhang, Appl. Surf. Sci., 319, 8 (2014); https://doi.org/10.1016/j.apsusc.2014.04.182
- D. Zhang, Transition Met Chem., 35, 933 (2010); https://doi.org/10.1007/s11243-010-9414-6
- W. Fang, M. Xing and J. Zhang, Appl. Catal. B, 160–161, 240 (2014); https://doi.org/10.1016/j.apcatb.2014.05.031
- H.L. Wang, D.Y. Zhao and W.F. Jiang, Desalination Water Treat., 51, 2826 (2013); https://doi.org/10.1080/19443994.2012.750789
- S. Mazumdar and A.J. Bhattacharyya, RSC Adv., 5, 34942 (2015); https://doi.org/10.1039/C5RA04733A
- S.B. Kalia, D. Kumar, M. Sharma and J. Christopher, J. Therm. Anal. Calorim., 120, 1099 (2015); https://doi.org/10.1007/s10973-014-4342-x
- E. Vijayakumar, A. Subramania, Z. Fei and P.J. Dyson, RSC Adv., 5, 52026 (2015); https://doi.org/10.1039/C5RA04944J
- A. Pourahmad and Sh. Sohrabnezhad, Mater. Lett., 65, 205 (2011); https://doi.org/10.1016/j.matlet.2010.10.009
- P. Scherrer and G. Nachar, Math. Physik. Klasse, 2, 98 (1918).
- X. Meng, J. Deng, J. Zhu, H. Bi, E. Kan and X. Wang, Sci. Rep., 6, 21717 (2016); https://doi.org/10.1038/srep21717
- S.B. Sibokoza, M.J. Moloto, N. Moloto and P.N. Sibiya, Chalcogenide Lett., 14, 69 (2017).
- S.S. Nath, D. Chakdar, G. Gope and D.K. Avasthi, Nanotrends, 2, 20 (2007).
- G. Yang, D. Gao, Z. Shi, Z. Zhang, J. Zhang, J. Zhang and D. Xue, J. Phys. Chem. C, 114, 21989 (2010); https://doi.org/10.1021/jp106818p
- R.W.Y. Man, A.R.C. Brown and M.O. Wolf, Angew. Chem. Int. Ed. Engl., 51, 11350 (2012); https://doi.org/10.1002/anie.201205057
- J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum: New York (1971).
- P. Borthakur and M.R. Das, J. Colloid Interface Sci., 516, 342 (2018); https://doi.org/10.1016/j.jcis.2018.01.050
- C. Djebbari, E. Zouaoui, N. Ammouchi, C. Nakib, D. Zouied and K. Dob, SN Appl. Sci., 3, 255 (2021); https://doi.org/10.1007/s42452-021-04266-4
- A.B. Lavand, M.N. Bhatu and Y.S. Malghe, J. Mater. Res. Technol., 8, 299 (2019); https://doi.org/10.1016/j.jmrt.2017.05.019
- H. Ullah, E. Viglasova and M. Galambos, Processes, 9, 263 (2021); https://doi.org/10.3390/pr9020263
- T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, J. Photochem. Photobiol. B, 199, 111621 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111621
- S. Rajendrachari, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp and G.K. Jayaprakash, Arab. J. Chem., 14, 103180 (2021); https://doi.org/10.1016/j.arabjc.2021.103180
References
J. Yu, J.X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am. Chem. Soc., 136, 8839 (2014); https://doi.org/10.1021/ja5044787
J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res., 46, 1900 (2013); https://doi.org/10.1021/ar300227e
J.R. Ran, J. Zhang, J.G. Yu, M. Jaroniec and S.Z. Qiao, Chem. Soc. Rev., 43, 7787 (2014); https://doi.org/10.1039/C3CS60425J
V.K. Gupta and Suhas, J. Environ. Manage., 90, 2313 (2009); https://doi.org/10.1016/j.jenvman.2008.11.017
V.K. Gupta, P.J.M. Carrott, M.M.L. Ribeiro Carrott and Suhas, Crit. Rev. Environ. Sci. Technol., 39, 783 (2009); https://doi.org/10.1080/10643380801977610
X. Wang, W. Bi, P. Zhai, X. Wang, H. Li, G. Mailhot and W. Dong, Appl. Surf. Sci., 360, 240 (2016); https://doi.org/10.1016/j.apsusc.2015.10.229
Y. Sohn, W. Huang and F. Taghipour, Appl. Surf. Sci., 396, 1696 (2017); https://doi.org/10.1016/j.apsusc.2016.11.240
R.A. He, S.W. Cao and J.G. Yu, Wuli Huaxue Xuebao, 32, 2841 (2016); https://doi.org/10.3866/PKU.WHXB201611021
Q. Huang, J.G. Yu, S.W. Cao, C. Cui and B. Cheng, Appl. Surf. Sci., 358, 350 (2015); https://doi.org/10.1016/j.apsusc.2015.07.082
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
Z. Ni, Y. Sun, Y. Zhang and F. Dong, Appl. Surf. Sci., 365, 314 (2016); https://doi.org/10.1016/j.apsusc.2015.12.231
S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, J. Appl. Catal. Environ. Biol., 57, 109 (2005); https://doi.org/10.1016/j.apcatb.2004.10.015
W. Panpa, P. Sujaridworakun and S. Jinawath, Appl. Catal. B, 80, 271 (2008); https://doi.org/10.1016/j.apcatb.2007.11.029
C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi and H. Tamiaki, Thin Solid Films, 516, 5881 (2008); https://doi.org/10.1016/j.tsf.2007.10.050
J.X. Low, B. Cheng and J.G. Yu, Appl. Surf. Sci., 392, 658 (2017); https://doi.org/10.1016/j.apsusc.2016.09.093
S.W. Cao, J.X. Low, J.G. Yu and M. Jaroniec, Adv. Mater., 27, 2150 (2015); https://doi.org/10.1002/adma.201500033
W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang and S.M. Chen, RSC Adv., 5, 101214 (2015); https://doi.org/10.1039/C5RA18302B.
A. Taha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 1373 (2003); https://doi.org/10.1016/S1386 1425(02)00337-2
K. Dai, H. Chen, T. Peng, D. Ke and H. Yi, Chemosphere, 69, 1361 (2007); https://doi.org/10.1016/j.chemosphere.2007.05.021
Y. Liu, X. Chen, J. Li and C. Burda, Chemosphere, 61, 11 (2005); https://doi.org/10.1016/j.chemosphere.2005.03.069
X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang and J.J. Zhu, J. Cryst. Growth, 252, 593 (2003); https://doi.org/10.1016/S0022-0248(03)01030-3
C. Wu, J.B. Shi, C.J. Chen, Y.C. Chen, Y.T. Lin, P.F. Wu and S.Y. Wei, Mater. Lett., 62, 1074 (2008); https://doi.org/10.1016/j.matlet.2007.07.046
R.S. Mane and C.D. Lokhande, Mater. Chem. Phys., 65, 1 (2000); https://doi.org/10.1016/S0254-0584(00)00217-0
M. Xu, H. Niu, J. Huang, J. Song, C. Mao, S. Zhang, C. Zhu and C. Chen, Appl. Surf. Sci., 351, 374 (2015); https://doi.org/10.1016/j.apsusc.2015.05.158
M. Wang, A.M. Anghel, B. Marsan, N.L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009); https://doi.org/10.1021/ja905970y
X. Fang, T. Song, R. Liu and B. Sun, J. Phys. Chem. C, 118, 20238 (2014); https://doi.org/10.1021/jp506345a
Z. Yu, J. Meng, J. Xiao, Y. Li and Y. Li, Int. J. Hydrogen Energy, 39, 15387 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.165
S. Kong, Z. Jin, H. Liu and Y. Wang, J. Phys. Chem. C, 118, 25355 (2014); https://doi.org/10.1021/jp508698q
D. Ayodhya, M. Venkatesham, A. Santoshi kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, G. Bahmanrokh, A. Abedini, M. Navasery and P. Vaziri, Int. J. Mol. Sci., 13, 12242 (2012); https://doi.org/10.3390/ijms131012242
S. Chin, E. Park, M. Kim and J. Jurng, Powder Technol., 201, 171 (2010); https://doi.org/10.1016/j.powtec.2010.03.034
M. Asilturk, F. Sayilkan, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu and E. Arpac, J. Hazard. Mater. B, 129, 164 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.027
S.S. Arbuj, R.R. Hawaldar, U.P. Mulik, B.N. Wani, D.P. Amalnerkar and S.B. Waghmode, Mater. Sci. Eng. B, 168, 90 (2010); https://doi.org/10.1016/j.mseb.2009.11.010
S. Dafare, P.S. Deshpande and R.S. Bhavsar, Indian J. Chem. Technol., 20, 406 (2013).
S. Bagwasi, B. Tian, J. Zhang and M. Nasir, Chem. Eng. J., 217, 108 (2013); https://doi.org/10.1016/j.cej.2012.11.080
Y. Gu, M. Xing and J. Zhang, Appl. Surf. Sci., 319, 8 (2014); https://doi.org/10.1016/j.apsusc.2014.04.182
D. Zhang, Transition Met Chem., 35, 933 (2010); https://doi.org/10.1007/s11243-010-9414-6
W. Fang, M. Xing and J. Zhang, Appl. Catal. B, 160–161, 240 (2014); https://doi.org/10.1016/j.apcatb.2014.05.031
H.L. Wang, D.Y. Zhao and W.F. Jiang, Desalination Water Treat., 51, 2826 (2013); https://doi.org/10.1080/19443994.2012.750789
S. Mazumdar and A.J. Bhattacharyya, RSC Adv., 5, 34942 (2015); https://doi.org/10.1039/C5RA04733A
S.B. Kalia, D. Kumar, M. Sharma and J. Christopher, J. Therm. Anal. Calorim., 120, 1099 (2015); https://doi.org/10.1007/s10973-014-4342-x
E. Vijayakumar, A. Subramania, Z. Fei and P.J. Dyson, RSC Adv., 5, 52026 (2015); https://doi.org/10.1039/C5RA04944J
A. Pourahmad and Sh. Sohrabnezhad, Mater. Lett., 65, 205 (2011); https://doi.org/10.1016/j.matlet.2010.10.009
P. Scherrer and G. Nachar, Math. Physik. Klasse, 2, 98 (1918).
X. Meng, J. Deng, J. Zhu, H. Bi, E. Kan and X. Wang, Sci. Rep., 6, 21717 (2016); https://doi.org/10.1038/srep21717
S.B. Sibokoza, M.J. Moloto, N. Moloto and P.N. Sibiya, Chalcogenide Lett., 14, 69 (2017).
S.S. Nath, D. Chakdar, G. Gope and D.K. Avasthi, Nanotrends, 2, 20 (2007).
G. Yang, D. Gao, Z. Shi, Z. Zhang, J. Zhang, J. Zhang and D. Xue, J. Phys. Chem. C, 114, 21989 (2010); https://doi.org/10.1021/jp106818p
R.W.Y. Man, A.R.C. Brown and M.O. Wolf, Angew. Chem. Int. Ed. Engl., 51, 11350 (2012); https://doi.org/10.1002/anie.201205057
J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum: New York (1971).
P. Borthakur and M.R. Das, J. Colloid Interface Sci., 516, 342 (2018); https://doi.org/10.1016/j.jcis.2018.01.050
C. Djebbari, E. Zouaoui, N. Ammouchi, C. Nakib, D. Zouied and K. Dob, SN Appl. Sci., 3, 255 (2021); https://doi.org/10.1007/s42452-021-04266-4
A.B. Lavand, M.N. Bhatu and Y.S. Malghe, J. Mater. Res. Technol., 8, 299 (2019); https://doi.org/10.1016/j.jmrt.2017.05.019
H. Ullah, E. Viglasova and M. Galambos, Processes, 9, 263 (2021); https://doi.org/10.3390/pr9020263
T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam and R. Selvaraj, J. Photochem. Photobiol. B, 199, 111621 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111621
S. Rajendrachari, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp and G.K. Jayaprakash, Arab. J. Chem., 14, 103180 (2021); https://doi.org/10.1016/j.arabjc.2021.103180