Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Particle Size on Physico-Chemical and Antioxidant Activity of Insoluble Dietary Fiber Powder from Corncob (Zea mays L.)
Corresponding Author(s) : Edi Suryanto
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
Effects of particles size of dietary fiber powder on the physico-chemical properties and antioxidant activity of corncob were investigated. Corncob was grounded in a regularly mill and grinding characteristics and the particles size were evaluated by particle size analyzer (PSA) using laser diffraction method and Fourier transform infrared (FTIR). The results showed that the insoluble dietary fiber (IDF) powder from corncob had the highest crude fiber content (32.31%) and carbohydrates (55.07%). Spectral analysis shows that the IDF matrix structure does not change after grinding and has three characteristics of absorption spectra at 3433-3425 cm-1 (O-H); 2920 cm-1 (C-H) and 1635 cm-1 (aromatic) in presence of the special structures of polysaccharide and lignin compounds. Particle size analyzer (PSA) results showed that the size of IDF 200 mesh and 80 mesh powder were 63.13 and 260.89 μm, respectively. The insoluble dietary fiber (IDF) significantly shows a decrease in dietary fiber content in line with the reduction in particle size. The IDF powder with a particle size of 63.13 μm showed that highest total phenolic content accompanied with the best antioxidant activity through all antioxidant assays (p < 0.05). This study concluded that the IDF micro-powder particle size exerted influence on physico-chemical properties, dietary fiber, total phenolic and antioxidant activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ashour, M. Amer, A. Marzouk, K. Shimizu, R. Kondo and S. ElSharkawy, Molecules, 18, 13823 (2013); https://doi.org/10.3390/molecules181113823
- A. Abirami, G. Nagarani and P. Siddhuraju, Bioact. Carbohydr. Diet. Fibre, 4, 16 (2014); https://doi.org/10.1016/j.bcdf.2014.06.001
- A. Idouraine, M.J. Khan and C.W. Weber, J. Agric. Food Chem., 44, 2067 (1996); https://doi.org/10.1021/jf960151e
- K.J. Lorenz and K. Kulp, Cereal Science and Technology, Marcel Dekker: New York (1991).
- Y.L. Huang, F. Sheu, M.H. Lee and C.F. Chau, J. Sci. Food Agric., 88, 435 (2008); https://doi.org/10.1002/jsfa.3104
- G.H. Mcintosh, Prev. Med., 22, 767 (1993); https://doi.org/10.1006/pmed.1993.1070
- J.W. van der Kamp, J. Jones, B. MacCleary and D. Topping, Dietary Fibre: New Frontiers for Food and Health, Wageningen Academic Publishers: Wageningen, The Netherlands, pp. 1-586 (2010).
- B.N. Ames and M.K. Shigenaga, Eds.: B. Haliwell and O.I. Aruoma, Oxidants are a Major Contributor in Cancer and Aging, In: DNA and Free Radicals, Ellis Horwoosd Ltd.: West Sussex, U.K. (1993).
- F. Shahidi and M. Naczk, Food Phenolics: Sources, Chemistry, Effects and Applications. Technomic Publication Company, Inc.: Lancaster (1995).
- B. Halliwel and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press: London (2001).
- K.X. Zhu, S. Huang, W. Peng, H.F. Qian and H.M. Zhou, Food Res. Int., 43, 943 (2010); https://doi.org/10.1016/j.foodres.2010.01.005
- C.F. Chau, Y.T. Wang and Y.L. Wen, Food Chem., 100, 1402 (2007); https://doi.org/10.1016/j.foodchem.2005.11.034
- X.Y. Zhao, Z.B. Yang, G.S. Gai and Y. Yang, J. Food Eng., 91, 217 (2009); https://doi.org/10.1016/j.jfoodeng.2008.08.024
- M. Senevirathne, Y.J. Jeon, J.H. Ha and S.-H. Kim, J. Food Eng., 92, 157 (2009); https://doi.org/10.1016/j.jfoodeng.2008.10.033
- C.C.R. Wang, J.Y. Ciou and P.Y. Chiang, Food Chem., 113, 970 (2009); https://doi.org/10.1016/j.foodchem.2008.08.048
- B. Tao, F. Ye, H. Li, Q. Hu, S. Xue and G. Zhao, J. Agric. Food Chem., 62, 7166 (2014); https://doi.org/10.1021/jf501646b
- AOAC, Official Methods of Analysis, Ed. 16 (1995).
- X. Li, J. Lin, W. Han, W. Mai, L. Wang, Q. Li, M. Lin, M. Bai, L. Zhang and D. Chen, Molecules, 17, 13457 (2012); https://doi.org/10.3390/molecules171113457
- A. Szydlowska-Czerniak, C. Dianoczki, K. Recseg, G. Karlovits and E. Szlyk, Talanta, 76, 899 (2008); https://doi.org/10.1016/j.talanta.2008.04.055
- G.C. Yen and H.Y. Chen, J. Agric. Food Chem., 43, 27 (1995); https://doi.org/10.1021/jf00049a007
- U.S. Abubakar, K.M. Yusuf, I. Safiyanu, S. Abdullahi, S.R. Saidu, G.T. Abdu and A.M. Indee, Int. J. Food Sci. Nutr., 1, 25 (2016).
- D.J. Peer and S. Leeson, Anim. Feed Sci. Technol., 13, 191 (1985); https://doi.org/10.1016/0377 8401(85)90022-7
- D. Cuddeford, In Pract., 11, 211 (1989); https://doi.org/10.1136/inpract.11.5.211
- L.G. Saldanha, Pediatry, 96, 994 (1995).
- C. Agostoni, R. Riva and M. Giovannini, Pediatry, 96, 1000 (1995).
- K. Giry, J.M. Pe’an, L. Giraud, S. Marsas, H. Rolland and P. Wüthrich, Int. J. Pharm., 321, 162 (2006); https://doi.org/10.1016/j.ijpharm.2006.05.009
- G. Zhao, R. Zhang, L. Dong, F. Huang, X. Tang, Z. Wei and M. Zhang, LWT-Food Sci. Technol., 87, 450 (2018); https://doi.org/10.1016/j.lwt.2017.09.016
- C.K. Riley, S.A. Adebayo, A.O. Wheatley and H.N. Asemota, J. Powder Technol., 185, 280 (2008); https://doi.org/10.1016/j.powtec.2007.10.028
- X. Yan, R. Ye and Y. Chen, Food Chem., 180, 106 (2015); https://doi.org/10.1016/j.foodchem.2015.01.127
- M. Ma and T. Mu, Carbohydr. Polym., 136, 87 (2016); https://doi.org/10.1016/j.carbpol.2015.09.030
- Y. Liu, L. Wang, F. Liu and S. Pan, Int. J. Polym. Sci., 2016, 6269302 (2016); https://doi.org/10.1155/2016/6269302
- X. Zhao, H. Zhu, G. Zhang and W. Tang, J. Powder Technol., 286, 838 (2015); https://doi.org/10.1016/j.powtec.2015.09.025
- F.Y. Ye, B.B. Tao, J. Liu, Y. Zou and G.H. Zhao, Food Sci. Technol. Int., 22, 246 (2016); https://doi.org/10.1177/1082013215593394
- M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker and H. Attia, Food Chem., 124, 411 (2011); https://doi.org/10.1016/j.foodchem.2010.06.077
- T.P. Trinidad, D. Valdez, A.C. Mallillin, F.C. Askali, A.S. Maglaya, M.T. Chua, J. Castillo, A.S. Loyola and D.B. Masa, Indian Coconut J., 7, 45 (2001).
- S.N. Raghavendra, S.R. Ramachandra-Swamy, N.K. Rastogi, K.S.M.S. Raghavarao, S. Kumar and R.N. Tharanathan, J. Food Eng., 72, 281 (2006); https://doi.org/10.1016/j.jfoodeng.2004.12.008
- J.M. Coulson, J.F. Richardson, J.R. Backhurst and J.H. Harker, Fuild Flow Heat Transfer and Mass Transfer, In: Coulson & Richardson’s Chemical Engineering, John Francis Richardson, Elsevier, vol. 1 (1999).
- M. Naczk and F. Shahidi, J. Pharm. Biomed. Anal., 41, 1523 (2006); https://doi.org/10.1016/j.jpba.2006.04.002
- F. Zhu, B. Du, R. Li and J. Li, Biocatal. Agric. Biotechnol., 3, 30 (2014); https://doi.org/10.1016/j.bcab.2013.12.009
- B. Du, F. Zhu and B. Xu, Bioact. Carbohydr. Diet. Fiber, 4, 170 (2014); https://doi.org/10.1016/j.bcdf.2014.09.003
- F. Zhu, B. Du and J. Li, Food Sci. Technol. Int., 20, 55 (2014); https://doi.org/10.1177/1082013212469619
- L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson and M. Qian, J. Agric. Food Chem., 50, 1619 (2002); https://doi.org/10.1021/jf010964p
- M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
- L.S. Lai, S.T. Chou and W.W. Chao, J. Agric. Food Chem., 49, 963 (2001); https://doi.org/10.1021/jf001146k
- R.G.O. Rumbaoa, D.F. Cornago and I.M. Geronimo, J. Food Compos. Anal., 22, 546 (2009); https://doi.org/10.1016/j.jfca.2008.11.004
- X. Li, X. Wu and L. Huang, Molecules, 14, 5349 (2009); https://doi.org/10.3390/molecules14125349
- X. Li, D. Chen, Y. Mai, B. Wen and X. Wang, Nat. Prod. Res., 26, 1050 (2012); https://doi.org/10.1080/14786419.2010.551771
References
A. Ashour, M. Amer, A. Marzouk, K. Shimizu, R. Kondo and S. ElSharkawy, Molecules, 18, 13823 (2013); https://doi.org/10.3390/molecules181113823
A. Abirami, G. Nagarani and P. Siddhuraju, Bioact. Carbohydr. Diet. Fibre, 4, 16 (2014); https://doi.org/10.1016/j.bcdf.2014.06.001
A. Idouraine, M.J. Khan and C.W. Weber, J. Agric. Food Chem., 44, 2067 (1996); https://doi.org/10.1021/jf960151e
K.J. Lorenz and K. Kulp, Cereal Science and Technology, Marcel Dekker: New York (1991).
Y.L. Huang, F. Sheu, M.H. Lee and C.F. Chau, J. Sci. Food Agric., 88, 435 (2008); https://doi.org/10.1002/jsfa.3104
G.H. Mcintosh, Prev. Med., 22, 767 (1993); https://doi.org/10.1006/pmed.1993.1070
J.W. van der Kamp, J. Jones, B. MacCleary and D. Topping, Dietary Fibre: New Frontiers for Food and Health, Wageningen Academic Publishers: Wageningen, The Netherlands, pp. 1-586 (2010).
B.N. Ames and M.K. Shigenaga, Eds.: B. Haliwell and O.I. Aruoma, Oxidants are a Major Contributor in Cancer and Aging, In: DNA and Free Radicals, Ellis Horwoosd Ltd.: West Sussex, U.K. (1993).
F. Shahidi and M. Naczk, Food Phenolics: Sources, Chemistry, Effects and Applications. Technomic Publication Company, Inc.: Lancaster (1995).
B. Halliwel and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press: London (2001).
K.X. Zhu, S. Huang, W. Peng, H.F. Qian and H.M. Zhou, Food Res. Int., 43, 943 (2010); https://doi.org/10.1016/j.foodres.2010.01.005
C.F. Chau, Y.T. Wang and Y.L. Wen, Food Chem., 100, 1402 (2007); https://doi.org/10.1016/j.foodchem.2005.11.034
X.Y. Zhao, Z.B. Yang, G.S. Gai and Y. Yang, J. Food Eng., 91, 217 (2009); https://doi.org/10.1016/j.jfoodeng.2008.08.024
M. Senevirathne, Y.J. Jeon, J.H. Ha and S.-H. Kim, J. Food Eng., 92, 157 (2009); https://doi.org/10.1016/j.jfoodeng.2008.10.033
C.C.R. Wang, J.Y. Ciou and P.Y. Chiang, Food Chem., 113, 970 (2009); https://doi.org/10.1016/j.foodchem.2008.08.048
B. Tao, F. Ye, H. Li, Q. Hu, S. Xue and G. Zhao, J. Agric. Food Chem., 62, 7166 (2014); https://doi.org/10.1021/jf501646b
AOAC, Official Methods of Analysis, Ed. 16 (1995).
X. Li, J. Lin, W. Han, W. Mai, L. Wang, Q. Li, M. Lin, M. Bai, L. Zhang and D. Chen, Molecules, 17, 13457 (2012); https://doi.org/10.3390/molecules171113457
A. Szydlowska-Czerniak, C. Dianoczki, K. Recseg, G. Karlovits and E. Szlyk, Talanta, 76, 899 (2008); https://doi.org/10.1016/j.talanta.2008.04.055
G.C. Yen and H.Y. Chen, J. Agric. Food Chem., 43, 27 (1995); https://doi.org/10.1021/jf00049a007
U.S. Abubakar, K.M. Yusuf, I. Safiyanu, S. Abdullahi, S.R. Saidu, G.T. Abdu and A.M. Indee, Int. J. Food Sci. Nutr., 1, 25 (2016).
D.J. Peer and S. Leeson, Anim. Feed Sci. Technol., 13, 191 (1985); https://doi.org/10.1016/0377 8401(85)90022-7
D. Cuddeford, In Pract., 11, 211 (1989); https://doi.org/10.1136/inpract.11.5.211
L.G. Saldanha, Pediatry, 96, 994 (1995).
C. Agostoni, R. Riva and M. Giovannini, Pediatry, 96, 1000 (1995).
K. Giry, J.M. Pe’an, L. Giraud, S. Marsas, H. Rolland and P. Wüthrich, Int. J. Pharm., 321, 162 (2006); https://doi.org/10.1016/j.ijpharm.2006.05.009
G. Zhao, R. Zhang, L. Dong, F. Huang, X. Tang, Z. Wei and M. Zhang, LWT-Food Sci. Technol., 87, 450 (2018); https://doi.org/10.1016/j.lwt.2017.09.016
C.K. Riley, S.A. Adebayo, A.O. Wheatley and H.N. Asemota, J. Powder Technol., 185, 280 (2008); https://doi.org/10.1016/j.powtec.2007.10.028
X. Yan, R. Ye and Y. Chen, Food Chem., 180, 106 (2015); https://doi.org/10.1016/j.foodchem.2015.01.127
M. Ma and T. Mu, Carbohydr. Polym., 136, 87 (2016); https://doi.org/10.1016/j.carbpol.2015.09.030
Y. Liu, L. Wang, F. Liu and S. Pan, Int. J. Polym. Sci., 2016, 6269302 (2016); https://doi.org/10.1155/2016/6269302
X. Zhao, H. Zhu, G. Zhang and W. Tang, J. Powder Technol., 286, 838 (2015); https://doi.org/10.1016/j.powtec.2015.09.025
F.Y. Ye, B.B. Tao, J. Liu, Y. Zou and G.H. Zhao, Food Sci. Technol. Int., 22, 246 (2016); https://doi.org/10.1177/1082013215593394
M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker and H. Attia, Food Chem., 124, 411 (2011); https://doi.org/10.1016/j.foodchem.2010.06.077
T.P. Trinidad, D. Valdez, A.C. Mallillin, F.C. Askali, A.S. Maglaya, M.T. Chua, J. Castillo, A.S. Loyola and D.B. Masa, Indian Coconut J., 7, 45 (2001).
S.N. Raghavendra, S.R. Ramachandra-Swamy, N.K. Rastogi, K.S.M.S. Raghavarao, S. Kumar and R.N. Tharanathan, J. Food Eng., 72, 281 (2006); https://doi.org/10.1016/j.jfoodeng.2004.12.008
J.M. Coulson, J.F. Richardson, J.R. Backhurst and J.H. Harker, Fuild Flow Heat Transfer and Mass Transfer, In: Coulson & Richardson’s Chemical Engineering, John Francis Richardson, Elsevier, vol. 1 (1999).
M. Naczk and F. Shahidi, J. Pharm. Biomed. Anal., 41, 1523 (2006); https://doi.org/10.1016/j.jpba.2006.04.002
F. Zhu, B. Du, R. Li and J. Li, Biocatal. Agric. Biotechnol., 3, 30 (2014); https://doi.org/10.1016/j.bcab.2013.12.009
B. Du, F. Zhu and B. Xu, Bioact. Carbohydr. Diet. Fiber, 4, 170 (2014); https://doi.org/10.1016/j.bcdf.2014.09.003
F. Zhu, B. Du and J. Li, Food Sci. Technol. Int., 20, 55 (2014); https://doi.org/10.1177/1082013212469619
L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson and M. Qian, J. Agric. Food Chem., 50, 1619 (2002); https://doi.org/10.1021/jf010964p
M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
L.S. Lai, S.T. Chou and W.W. Chao, J. Agric. Food Chem., 49, 963 (2001); https://doi.org/10.1021/jf001146k
R.G.O. Rumbaoa, D.F. Cornago and I.M. Geronimo, J. Food Compos. Anal., 22, 546 (2009); https://doi.org/10.1016/j.jfca.2008.11.004
X. Li, X. Wu and L. Huang, Molecules, 14, 5349 (2009); https://doi.org/10.3390/molecules14125349
X. Li, D. Chen, Y. Mai, B. Wen and X. Wang, Nat. Prod. Res., 26, 1050 (2012); https://doi.org/10.1080/14786419.2010.551771