Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Investigations of State Specific Hydrogen Atom Transfer in 8-Formyl-7-hydroxy-4-methylcoumarin
Corresponding Author(s) : K. Jagadeesha
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
Excited state intramolecular hydrogen transfer (ESIHT) reaction of 8-formyl-7-hydroxy-4-methyl coumarin (FC) in its pure and hydrated state FC-(H2O)4 (FCH) has been studied by implementing state specific time dependent density functional theory (SS-TDDFT) along with the effective fragment potential (EFP1) method for solvation with discrete water molecules. The intramolecular hydrogen bond formed between hydroxyl hydrogen (H18) and formyl oxygen (O15) and intermolecular hydrogen bonds formed due to microsolvation were explored. The studies of electrostatic potential, natural charge analysis, difference electron density map and UV-Vis spectra of both FC and FCH molecules establish the intramolecular charge transfer (ICT) states of the molecules. The vertical excitation from S0 to S1 state causes the transfer of hydroxyl hydrogen to formyl oxygen and from S1 to S3 causes the transfer of the hydrogen atom back to hydroxyl oxygen. Potential energy surface scans along intramolecular hydrogen bonding at the ground and excited states confirm the state specific ESIHT reaction in both FC and FCH molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.S.V. Kumar, V. Raghavendra and V. Subramanian, J. Chem. Sci., 128, 1527 (2016); https://doi.org/10.1007/s12039-016-1172-3
- F. Fuster and S.J. Grabowski, J. Phys. Chem. A, 115, 10078 (2011); https://doi.org/10.1021/jp2056859
- D.K. Palit, T. Zhang, S. Kumazaki and K. Yoshihara, J. Phys. Chem. A, 107, 10798 (2003); https://doi.org/10.1021/jp030633a
- Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. Chem., 201, 203 (2009); https://doi.org/10.1016/j.jphotochem.2008.10.016
- M. Miao and Y. Shi, J. Comput. Chem., 32, 3058 (2011); https://doi.org/10.1002/jcc.21888
- M. Zhang, B. Ren, Y. Wang and C. Zhao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 101, 191 (2013); https://doi.org/10.1016/j.saa.2012.09.045
- M. Ramegowda, New J. Chem., 37, 2648 (2013); https://doi.org/10.1039/c3nj00446e
- M. Ramegowda, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 99 (2015); https://doi.org/10.1016/j.saa.2014.08.017
- M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
- M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
- I. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 2003, 6725 (2015); https://doi.org/10.1063/1.1559912
- P. Arora, L.V. Slipchenko, S.P. Webb, A. DeFusco and M.S. Gordon, J. Phys. Chem. A, 114, 6742 (2010); https://doi.org/10.1021/jp101780r
- N. De Silva and F. Zahariev, J. Chem. Phys., 134, 54111 (2011); https://doi.org/10.1063/1.3523578
- S. Yoo, F. Zahariev, S. Sok and M.S. Gordon, J. Chem. Phys., 129, 144112 (2008); https://doi.org/10.1063/1.2992049
- A. Douhal, S.K. Kim and A.H. Zewail, Nature, 378, 260 (1995); https://doi.org/10.1038/378260a0
- D.S. Lu and G.A. Voth, J. Am. Chem. Soc., 120, 4006 (1998); https://doi.org/10.1021/ja973397o
- D. Marx, M.E. Tuckerman, J. Hutter and M. Parrinello, Nature, 397, 601 (1999); https://doi.org/10.1038/17579
- M.-W. Chung, T.-Y. Lin, C.-C. Hsieh, K.-C. Tang, H. Fu, P.-T. Chou, S.-H. Yang and Y. Chi, J. Phys. Chem. A, 114, 7886 (2010); https://doi.org/10.1021/jp1036102
- A. Kyrychenko and J. Waluk, J. Phys. Chem. A, 110, 11958 (2006); https://doi.org/10.1021/jp063426u
- M. Ramegowda, K.N. Ranjitha and T.N. Deepika, New J. Chem., 40, 2211 (2016); https://doi.org/10.1039/C5NJ02917A
- K. Jagadeesha, Y.L. Ramu, M. Ramegowda and N.K. Lokanath, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 325 (2019); https://doi.org/10.1016/j.saa.2018.10.015
- Y.L. Ramu, K. Jagadeesha, T. Shivalingaswamy and M. Ramegowda, Chem. Phys. Lett., 739, 137030 (2020); https://doi.org/10.1016/j.cplett.2019.137030
- K.L. Han and G.J. Zhao, The Experimental and Theoretical Study on ESIHT/ESIPT along with the Excited State Intra/Intermolecular HB Dynamics of Many Organic and Biomolecules via Microsolvation, John Wiley & Sons Ltd.; New York (2011).
- L.D. Lavis and R.T. Raines, ACS Chem. Biol., 3, 142 (2008); https://doi.org/10.1021/cb700248m
- S.P. Pillai, S.R. Menon, L.A. Mitscher, C.A. Pillai and D.M. Shankel, J. Nat. Prod., 62, 1358 (1999); https://doi.org/10.1021/np990048u
- H. Khalfan, R. Abuknesha, M. Rand-Weaver, R.G. Price and D. Robinson, Histochem. J., 18, 497 (1986); https://doi.org/10.1007/BF01675617
- S. Sardari, Y. Mori, K. Horita, R.G. Micetich, S. Nishibe and M. Daneshtalab, Bioorg. Med. Chem., 7, 1933 (1999); https://doi.org/10.1016/S0968-0896(99)00138-8
- D.E. Polyansky and D.C. Neckers, J. Phys. Chem. A, 109, 2793 (2005); https://doi.org/10.1021/jp044554q
- S.Y. Park, Y. Kubota, K. Funabiki and M. Matsui, Chem. Lett., 38, 162 (2009); https://doi.org/10.1246/cl.2009.162
- M. Savarese, P.A. Netti, C. Adamo, N. Rega and I. Ciofini, J. Phys. Chem. B, 117, 16165 (2013); https://doi.org/10.1021/jp406301p
- M.B. Halli, R.B. Sumathi and M. Kinni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 99, 46 (2012); https://doi.org/10.1016/j.saa.2012.08.089
- A. Al-Kawkabani, B. Boutemeur-Kheddis, M. Makhloufi-Chebli, M. Hamdi, O. Talhi and A.M.S. Silva, Tetrahedron Lett., 54, 5111 (2013); https://doi.org/10.1016/j.tetlet.2013.07.047
- E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, USA (2013).
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
- M.S. Gordon and M.W. Schmidt, Eds.: C.E. Dykstra, G. Frenking, K.S. Kim and G.E. Scuseria, Advances in Electronic Structure Theory: GAMESS a Decade Later; In: Theory and Applications of Computational Chemistry, Elsevier, pp. 1167-1189 (2005).
- R.G. Parr and W. Yang, Density-Functional Theory of Atoms, Molecules, Oxford University Press: New York (1989).
- K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
- T.R. Cundari and W.J. Stevens, J. Chem. Phys., 98, 5555 (1993); https://doi.org/10.1063/1.464902
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
- S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K. Hirao, J. Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
- M. Chiba, T. Tsuneda and K. Hirao, Chem. Phys. Lett., 420, 391 (2006); https://doi.org/10.1016/j.cplett.2006.01.015
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- T.H. Dunning Jr., J. Chem. Phys., 90, 1007 (1989); https://doi.org/10.1063/1.456153
- F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
- H. Li, C.S. Pomelli and J.H. Jensen, Theor. Chim. Acta, 109, 71 (2003); https://doi.org/10.1007/s00214-002-0427-x
- J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
- H. Moghanian, A. Mobinikhaledi and R. Monjezi, J. Mol. Struct., 1052, 135 (2013); https://doi.org/10.1016/j.molstruc.2013.08.043
References
P.S.V. Kumar, V. Raghavendra and V. Subramanian, J. Chem. Sci., 128, 1527 (2016); https://doi.org/10.1007/s12039-016-1172-3
F. Fuster and S.J. Grabowski, J. Phys. Chem. A, 115, 10078 (2011); https://doi.org/10.1021/jp2056859
D.K. Palit, T. Zhang, S. Kumazaki and K. Yoshihara, J. Phys. Chem. A, 107, 10798 (2003); https://doi.org/10.1021/jp030633a
Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. Chem., 201, 203 (2009); https://doi.org/10.1016/j.jphotochem.2008.10.016
M. Miao and Y. Shi, J. Comput. Chem., 32, 3058 (2011); https://doi.org/10.1002/jcc.21888
M. Zhang, B. Ren, Y. Wang and C. Zhao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 101, 191 (2013); https://doi.org/10.1016/j.saa.2012.09.045
M. Ramegowda, New J. Chem., 37, 2648 (2013); https://doi.org/10.1039/c3nj00446e
M. Ramegowda, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 99 (2015); https://doi.org/10.1016/j.saa.2014.08.017
M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
I. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 2003, 6725 (2015); https://doi.org/10.1063/1.1559912
P. Arora, L.V. Slipchenko, S.P. Webb, A. DeFusco and M.S. Gordon, J. Phys. Chem. A, 114, 6742 (2010); https://doi.org/10.1021/jp101780r
N. De Silva and F. Zahariev, J. Chem. Phys., 134, 54111 (2011); https://doi.org/10.1063/1.3523578
S. Yoo, F. Zahariev, S. Sok and M.S. Gordon, J. Chem. Phys., 129, 144112 (2008); https://doi.org/10.1063/1.2992049
A. Douhal, S.K. Kim and A.H. Zewail, Nature, 378, 260 (1995); https://doi.org/10.1038/378260a0
D.S. Lu and G.A. Voth, J. Am. Chem. Soc., 120, 4006 (1998); https://doi.org/10.1021/ja973397o
D. Marx, M.E. Tuckerman, J. Hutter and M. Parrinello, Nature, 397, 601 (1999); https://doi.org/10.1038/17579
M.-W. Chung, T.-Y. Lin, C.-C. Hsieh, K.-C. Tang, H. Fu, P.-T. Chou, S.-H. Yang and Y. Chi, J. Phys. Chem. A, 114, 7886 (2010); https://doi.org/10.1021/jp1036102
A. Kyrychenko and J. Waluk, J. Phys. Chem. A, 110, 11958 (2006); https://doi.org/10.1021/jp063426u
M. Ramegowda, K.N. Ranjitha and T.N. Deepika, New J. Chem., 40, 2211 (2016); https://doi.org/10.1039/C5NJ02917A
K. Jagadeesha, Y.L. Ramu, M. Ramegowda and N.K. Lokanath, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 325 (2019); https://doi.org/10.1016/j.saa.2018.10.015
Y.L. Ramu, K. Jagadeesha, T. Shivalingaswamy and M. Ramegowda, Chem. Phys. Lett., 739, 137030 (2020); https://doi.org/10.1016/j.cplett.2019.137030
K.L. Han and G.J. Zhao, The Experimental and Theoretical Study on ESIHT/ESIPT along with the Excited State Intra/Intermolecular HB Dynamics of Many Organic and Biomolecules via Microsolvation, John Wiley & Sons Ltd.; New York (2011).
L.D. Lavis and R.T. Raines, ACS Chem. Biol., 3, 142 (2008); https://doi.org/10.1021/cb700248m
S.P. Pillai, S.R. Menon, L.A. Mitscher, C.A. Pillai and D.M. Shankel, J. Nat. Prod., 62, 1358 (1999); https://doi.org/10.1021/np990048u
H. Khalfan, R. Abuknesha, M. Rand-Weaver, R.G. Price and D. Robinson, Histochem. J., 18, 497 (1986); https://doi.org/10.1007/BF01675617
S. Sardari, Y. Mori, K. Horita, R.G. Micetich, S. Nishibe and M. Daneshtalab, Bioorg. Med. Chem., 7, 1933 (1999); https://doi.org/10.1016/S0968-0896(99)00138-8
D.E. Polyansky and D.C. Neckers, J. Phys. Chem. A, 109, 2793 (2005); https://doi.org/10.1021/jp044554q
S.Y. Park, Y. Kubota, K. Funabiki and M. Matsui, Chem. Lett., 38, 162 (2009); https://doi.org/10.1246/cl.2009.162
M. Savarese, P.A. Netti, C. Adamo, N. Rega and I. Ciofini, J. Phys. Chem. B, 117, 16165 (2013); https://doi.org/10.1021/jp406301p
M.B. Halli, R.B. Sumathi and M. Kinni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 99, 46 (2012); https://doi.org/10.1016/j.saa.2012.08.089
A. Al-Kawkabani, B. Boutemeur-Kheddis, M. Makhloufi-Chebli, M. Hamdi, O. Talhi and A.M.S. Silva, Tetrahedron Lett., 54, 5111 (2013); https://doi.org/10.1016/j.tetlet.2013.07.047
E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, USA (2013).
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
M.S. Gordon and M.W. Schmidt, Eds.: C.E. Dykstra, G. Frenking, K.S. Kim and G.E. Scuseria, Advances in Electronic Structure Theory: GAMESS a Decade Later; In: Theory and Applications of Computational Chemistry, Elsevier, pp. 1167-1189 (2005).
R.G. Parr and W. Yang, Density-Functional Theory of Atoms, Molecules, Oxford University Press: New York (1989).
K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
T.R. Cundari and W.J. Stevens, J. Chem. Phys., 98, 5555 (1993); https://doi.org/10.1063/1.464902
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); https://doi.org/10.1063/1.448799
S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K. Hirao, J. Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
M. Chiba, T. Tsuneda and K. Hirao, Chem. Phys. Lett., 420, 391 (2006); https://doi.org/10.1016/j.cplett.2006.01.015
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
T.H. Dunning Jr., J. Chem. Phys., 90, 1007 (1989); https://doi.org/10.1063/1.456153
F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
H. Li, C.S. Pomelli and J.H. Jensen, Theor. Chim. Acta, 109, 71 (2003); https://doi.org/10.1007/s00214-002-0427-x
J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
H. Moghanian, A. Mobinikhaledi and R. Monjezi, J. Mol. Struct., 1052, 135 (2013); https://doi.org/10.1016/j.molstruc.2013.08.043