Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis, Characterization, Antioxidant, Antibacterial and Dye Degradation of Silver Nanoparticles using Combretum indicum Leaf Extract
Corresponding Author(s) : Arnannit Kuyyogsuy
Asian Journal of Chemistry,
Vol. 34 No. 1 (2022): Vol 34 Issue 1, 2022
Abstract
Silver nanoparticles were synthesized by bioreduction of silver nitrate using the aqueous leaf extract of Combretum indicum (CI-AgNPs). The synthesized CI-AgNPs exhibited a distinct absorption peak at 414 nm in UV-vis spectroscopy. Various parameters such as pH, temperature and time were optimized using spectrophotometry. The particle size of the CI-AgNPs was 48 nm as evaluated from the laser particle size analyzer. The XRD and EDX analyses confirmed the presence of silver in silver nanoparticles. Synthesized CI-AgNPs revealed significant antioxidant, antimicrobial (against Escherichia coli and Staphylococcus aureus) and photocatalytic (against methylene blue under sunlight irradiation) activities. Thus, an eco-friendly method was developed to synthesize silver nanoparticles using the C. indicum leaf extract.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Gkanatsiou, Ê. Karamanoli, U. Menkissoglu-Spiroudi and C. Dendrinou-Samara, Polyhedron, 170, 395 (2019); https://doi.org/10.1016/j.poly.2019.06.002
- I. Kumar, M. Mondal, V. Meyappan and N. Sakthivel, Mater. Res. Bull., 117, 18 (2019); https://doi.org/10.1016/j.materresbull.2019.04.029
- M. Ali, B. Kim, K. D. Belfield, D. Norman, M. Brennan and G.S. Ali, Mater. Sci. Eng., 58, 359 (2016); https://doi.org/10.1016/j.msec.2015.08.045
- A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak and A.G. Kanaras, Chem. Rev., 119, 4819 (2019); https://doi.org/10.1021/acs.chemrev.8b00733
- M.K. Carpenter, T.E. Moylan, R.S. Kukreja, M.H. Atwan and M.M. Tessema, J. Am. Chem. Soc., 134, 8535 (2012); https://doi.org/10.1021/ja300756y
- B. Demirkan, S. Bozkurt, A. Savk, K. Cellat, F. Gülbagca, M.S. Nas, M.H. Alma and F. Sen, Sci. Rep., 9, 12258 (2019); https://doi.org/10.1038/s41598-019-48802-0
- M. Yasir, J. Singh, M.K. Tripathi, P. Singh and R. Shrivastava, Pharmacogn. Mag., 13, S840 (2018).
- F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya and F. Sen, Mater. Chem. Phys., 250, 123037 (2020); https://doi.org/10.1016/j.matchemphys.2020.123037
- M.S. Mohseni, M.A. Khalilzadeh, M. Mohseni, F.Z. Hargalani, M.I. Getso, V. Raissi and O. Raiesi, Biocatal. Agric. Biotechnol., 25, 101569 (2020); https://doi.org/10.1016/j.bcab.2020.101569
- P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x
- N. Toropov and T. Vartanyan, Materials Science Comprehensive Nanoscience and Nanotechnology, Elsevier, Edn 2, vol. 1, 61 (2019).
- M. Hamelian, M.M. Zangeneh, A. Shahmohammadi, K. Varmira and H. Veisi, Appl. Organomet. Chem., 34, e5278 (2020); https://doi.org/10.1002/aoc.5278
- P. Porrawatkul, R. Pimsen, S. Chanthai and P. Nuengmatcha, Asian J. Chem., 32, 2079 (2020); https://doi.org/10.14233/ajchem.2020.22749
- M.A. Ebrahimzadeh, S. Mortazavi-Derazkola and M.A. Zazouli, J. Mater. Sci. Mater. Electron., 30, 10994 (2019); https://doi.org/10.1007/s10854-019-01440-8
- A. Noypha, Y. Areerob, S. Chanthai and P. Nuengmatcha, J. Korean Ceram. Soc., 58, 297 (2021); https://doi.org/10.1007/s43207-020-00096-z
- L. Faxian, L. Jie and C. Xueling, Rare Met. Mater. Eng., 46, 2395 (2017); https://doi.org/10.1016/S1875-5372(17)30204-7
- M.K. Rabinal, M.N. Kalasad, K. Praveenkumar, V.R. Bharadi and A.M. Bhikshavartimath, J. Alloys Compd., 562, 43 (2013); https://doi.org/10.1016/j.jallcom.2013.01.043
- X. Zhang, H. Sun, S. Tan, J. Gao, Y. Fu and Z. Liu, Inorg. Chem. Commun., 100, 44 (2019); https://doi.org/10.1016/j.inoche.2018.12.012
- A. Arya, V. Mishra and T.S. Chundawat, Chem. Data Coll., 20, 100190 (2019); https://doi.org/10.1016/j.cdc.2019.100190
- R.A. Hamouda, M. Abd El-Mongy and K.F. Eid, Microb. Pathog., 129, 224 (2019); https://doi.org/10.1016/j.micpath.2019.02.016
- M.A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, M. Shirzadi-Ahodashti and S. Mortazavi-Derazkola, Bioorg. Chem., 94, 103425 (2020); https://doi.org/10.1016/j.bioorg.2019.103425
- P. Wetwitayaklung, T. Phaechamud, C. Limmatvapirat and S. Keokitichai, Acta Hortic., 185 (2008); https://doi.org/10.17660/ActaHortic.2008.786.20
- S. Sanguri, S. Kapil, P. Gopinathan, F.K. Pandey and T. Bhatnagar, Environ. Ecol., 29, 1351 (2011).
- Y. Yadav, P.K. Mohanty and S.B. Kasture, Int. J. Pharm. Life Sci., 2, 687 (2011).
- V.A. Bairagi, N. Sadu, K.L. Senthilkumar and Y. Ahire, Int. J. Pharm. Phytopharmacol. Res., 1, 166 (2012).
- B.S. Barik, S. Das and T. Hussain, Eur. J. Med. Plants, 31, 87 (2020); https://doi.org/10.9734/ejmp/2020/v31i2030369
- J. Sahu, P.K. Patel and B. Dubey, Int. J. Pharm. Res. Dev., 4, 86 (2012).
- T. Efferth, S. Kahl, K. Paulus, M. Adams, R. Rauh, H. Boechzelt, X. Hao, B. Kaina and R. Bauer, Mol. Cancer Ther., 7, 152 (2008); https://doi.org/10.1158/1535-7163.MCT-07-0073
- S.U. Ganaie, T. Abbasi and S.A. Abbasi, Particulat. Sci. Technol., 36, 681 (2018); https://doi.org/10.1080/02726351.2017.1292336
- G.E. Trease and W.C. Evans, Pharmacognosy, Saunders Publishers: London; Edn. 15, pp. 42-44. 221-229, 246-249, 304-306, 331-332, 391-393 (2002).
- J.B. Harborne, Phytochemical Methods: A Guide to Modern Techniques in Plants Analysis, Chapman & Hall: London, Edn 2, pp. 1-10, 100-117 (1984).
- W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
- T.M. Jasiem, I.S. Abbas and S.S. Raoof, J. Glob. Pharma Technol., 10, 267 (2018).
- M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo and O.A. Odeniyi, Sustain. Chem. Pharm., 15, 100197 (2020); https://doi.org/10.1016/j.scp.2019.100197
- R. Bhat, V.G. Sharanabasava, R. Deshpande, U. Shetti, G. Sanjeev and A. Venkataraman, J. Photochem. Photobiol. B, 125, 63 (2013); https://doi.org/10.1016/j.jphotobiol.2013.05.002
- P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
- S. Das, J. Das, A. Samadder, S.S. Bhattacharyya, D. Das and A.R. Khuda-Bukhsh, Colloids Surf. B Biointerfaces, 101, 325 (2013); https://doi.org/10.1016/j.colsurfb.2012.07.008
- S. Dinesh, S. Karthikeyan and P. Arumugam, Arch. Appl. Sci. Res., 4, 178 (2012).
- T.Y. Suman, S.R. Radhika Rajasree, A. Kanchana and S.B. Elizabeth, Colloids Surf. B Biointerfaces, 106, 74 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.037
- R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri and S. Kannan, Process Biochem., 47, 2405 (2012); https://doi.org/10.1016/j.procbio.2012.09.025
- V. Ravichandran, S. Vasanthi, S. Shalini, S.A.A. Shah, M. Tripathy and N. Paliwal, Results Phys., 15, 102565 (2019); https://doi.org/10.1016/j.rinp.2019.102565
- M.S. Riaz Rajoka, H.M. Mehwish, H. Zhang, M. Ashraf, H. Fang, X. Zeng, Y. Wu, M. Khurshid, L. Zhao and Z. He, Colloids Surf. B Biointerfaces, 186, 110734 (2020); https://doi.org/10.1016/j.colsurfb.2019.110734
- A. Panáèek, L. Kvítek, R. Prucek, M. Koláø, R. Veèeøová, N. Pizúrová, V.K. Sharma, T. Nevìèná and R. Zboøil, J. Phys. Chem. B, 110, 16248 (2006); https://doi.org/10.1021/jp063826h
- J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059
- Y. Ma, F. Shi, Z. Wang, M. Wu, J. Ma and C. Gao, Desalination, 286, 131 (2012); https://doi.org/10.1016/j.desal.2011.10.040
References
C. Gkanatsiou, Ê. Karamanoli, U. Menkissoglu-Spiroudi and C. Dendrinou-Samara, Polyhedron, 170, 395 (2019); https://doi.org/10.1016/j.poly.2019.06.002
I. Kumar, M. Mondal, V. Meyappan and N. Sakthivel, Mater. Res. Bull., 117, 18 (2019); https://doi.org/10.1016/j.materresbull.2019.04.029
M. Ali, B. Kim, K. D. Belfield, D. Norman, M. Brennan and G.S. Ali, Mater. Sci. Eng., 58, 359 (2016); https://doi.org/10.1016/j.msec.2015.08.045
A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak and A.G. Kanaras, Chem. Rev., 119, 4819 (2019); https://doi.org/10.1021/acs.chemrev.8b00733
M.K. Carpenter, T.E. Moylan, R.S. Kukreja, M.H. Atwan and M.M. Tessema, J. Am. Chem. Soc., 134, 8535 (2012); https://doi.org/10.1021/ja300756y
B. Demirkan, S. Bozkurt, A. Savk, K. Cellat, F. Gülbagca, M.S. Nas, M.H. Alma and F. Sen, Sci. Rep., 9, 12258 (2019); https://doi.org/10.1038/s41598-019-48802-0
M. Yasir, J. Singh, M.K. Tripathi, P. Singh and R. Shrivastava, Pharmacogn. Mag., 13, S840 (2018).
F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya and F. Sen, Mater. Chem. Phys., 250, 123037 (2020); https://doi.org/10.1016/j.matchemphys.2020.123037
M.S. Mohseni, M.A. Khalilzadeh, M. Mohseni, F.Z. Hargalani, M.I. Getso, V. Raissi and O. Raiesi, Biocatal. Agric. Biotechnol., 25, 101569 (2020); https://doi.org/10.1016/j.bcab.2020.101569
P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x
N. Toropov and T. Vartanyan, Materials Science Comprehensive Nanoscience and Nanotechnology, Elsevier, Edn 2, vol. 1, 61 (2019).
M. Hamelian, M.M. Zangeneh, A. Shahmohammadi, K. Varmira and H. Veisi, Appl. Organomet. Chem., 34, e5278 (2020); https://doi.org/10.1002/aoc.5278
P. Porrawatkul, R. Pimsen, S. Chanthai and P. Nuengmatcha, Asian J. Chem., 32, 2079 (2020); https://doi.org/10.14233/ajchem.2020.22749
M.A. Ebrahimzadeh, S. Mortazavi-Derazkola and M.A. Zazouli, J. Mater. Sci. Mater. Electron., 30, 10994 (2019); https://doi.org/10.1007/s10854-019-01440-8
A. Noypha, Y. Areerob, S. Chanthai and P. Nuengmatcha, J. Korean Ceram. Soc., 58, 297 (2021); https://doi.org/10.1007/s43207-020-00096-z
L. Faxian, L. Jie and C. Xueling, Rare Met. Mater. Eng., 46, 2395 (2017); https://doi.org/10.1016/S1875-5372(17)30204-7
M.K. Rabinal, M.N. Kalasad, K. Praveenkumar, V.R. Bharadi and A.M. Bhikshavartimath, J. Alloys Compd., 562, 43 (2013); https://doi.org/10.1016/j.jallcom.2013.01.043
X. Zhang, H. Sun, S. Tan, J. Gao, Y. Fu and Z. Liu, Inorg. Chem. Commun., 100, 44 (2019); https://doi.org/10.1016/j.inoche.2018.12.012
A. Arya, V. Mishra and T.S. Chundawat, Chem. Data Coll., 20, 100190 (2019); https://doi.org/10.1016/j.cdc.2019.100190
R.A. Hamouda, M. Abd El-Mongy and K.F. Eid, Microb. Pathog., 129, 224 (2019); https://doi.org/10.1016/j.micpath.2019.02.016
M.A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, M. Shirzadi-Ahodashti and S. Mortazavi-Derazkola, Bioorg. Chem., 94, 103425 (2020); https://doi.org/10.1016/j.bioorg.2019.103425
P. Wetwitayaklung, T. Phaechamud, C. Limmatvapirat and S. Keokitichai, Acta Hortic., 185 (2008); https://doi.org/10.17660/ActaHortic.2008.786.20
S. Sanguri, S. Kapil, P. Gopinathan, F.K. Pandey and T. Bhatnagar, Environ. Ecol., 29, 1351 (2011).
Y. Yadav, P.K. Mohanty and S.B. Kasture, Int. J. Pharm. Life Sci., 2, 687 (2011).
V.A. Bairagi, N. Sadu, K.L. Senthilkumar and Y. Ahire, Int. J. Pharm. Phytopharmacol. Res., 1, 166 (2012).
B.S. Barik, S. Das and T. Hussain, Eur. J. Med. Plants, 31, 87 (2020); https://doi.org/10.9734/ejmp/2020/v31i2030369
J. Sahu, P.K. Patel and B. Dubey, Int. J. Pharm. Res. Dev., 4, 86 (2012).
T. Efferth, S. Kahl, K. Paulus, M. Adams, R. Rauh, H. Boechzelt, X. Hao, B. Kaina and R. Bauer, Mol. Cancer Ther., 7, 152 (2008); https://doi.org/10.1158/1535-7163.MCT-07-0073
S.U. Ganaie, T. Abbasi and S.A. Abbasi, Particulat. Sci. Technol., 36, 681 (2018); https://doi.org/10.1080/02726351.2017.1292336
G.E. Trease and W.C. Evans, Pharmacognosy, Saunders Publishers: London; Edn. 15, pp. 42-44. 221-229, 246-249, 304-306, 331-332, 391-393 (2002).
J.B. Harborne, Phytochemical Methods: A Guide to Modern Techniques in Plants Analysis, Chapman & Hall: London, Edn 2, pp. 1-10, 100-117 (1984).
W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
T.M. Jasiem, I.S. Abbas and S.S. Raoof, J. Glob. Pharma Technol., 10, 267 (2018).
M.A. Odeniyi, V.C. Okumah, B.C. Adebayo-Tayo and O.A. Odeniyi, Sustain. Chem. Pharm., 15, 100197 (2020); https://doi.org/10.1016/j.scp.2019.100197
R. Bhat, V.G. Sharanabasava, R. Deshpande, U. Shetti, G. Sanjeev and A. Venkataraman, J. Photochem. Photobiol. B, 125, 63 (2013); https://doi.org/10.1016/j.jphotobiol.2013.05.002
P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
S. Das, J. Das, A. Samadder, S.S. Bhattacharyya, D. Das and A.R. Khuda-Bukhsh, Colloids Surf. B Biointerfaces, 101, 325 (2013); https://doi.org/10.1016/j.colsurfb.2012.07.008
S. Dinesh, S. Karthikeyan and P. Arumugam, Arch. Appl. Sci. Res., 4, 178 (2012).
T.Y. Suman, S.R. Radhika Rajasree, A. Kanchana and S.B. Elizabeth, Colloids Surf. B Biointerfaces, 106, 74 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.037
R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri and S. Kannan, Process Biochem., 47, 2405 (2012); https://doi.org/10.1016/j.procbio.2012.09.025
V. Ravichandran, S. Vasanthi, S. Shalini, S.A.A. Shah, M. Tripathy and N. Paliwal, Results Phys., 15, 102565 (2019); https://doi.org/10.1016/j.rinp.2019.102565
M.S. Riaz Rajoka, H.M. Mehwish, H. Zhang, M. Ashraf, H. Fang, X. Zeng, Y. Wu, M. Khurshid, L. Zhao and Z. He, Colloids Surf. B Biointerfaces, 186, 110734 (2020); https://doi.org/10.1016/j.colsurfb.2019.110734
A. Panáèek, L. Kvítek, R. Prucek, M. Koláø, R. Veèeøová, N. Pizúrová, V.K. Sharma, T. Nevìèná and R. Zboøil, J. Phys. Chem. B, 110, 16248 (2006); https://doi.org/10.1021/jp063826h
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059
Y. Ma, F. Shi, Z. Wang, M. Wu, J. Ma and C. Gao, Desalination, 286, 131 (2012); https://doi.org/10.1016/j.desal.2011.10.040