Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Active Carbon-Titanium Dioxide Composite
Corresponding Author(s) : Falah H. Hussein
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
Activated carbon was synthesized from Iraqi date palm seeds by physical and chemical activation technique under optimized growth conditions that allow the production of long, well aligned, high-quality activated carbon. Titanium dioxide nanoparticles were prepared using a sol gel method. The activated carbon/TiO2 composites were prepared using simple evaporation and a drying process. The structural, morphological and chemical properties of the prepared activated carbon, TiO2 and activated carbon/TiO2 composite were investigated by X-ray diffraction, Fourier transformed infrared and scanning electron microscope. The photocatalytic activity of activated carbon/TiO2 composite with 10 % of activated carbon was studied and compared with TiO2. The UV light photocatalytic activity was also evaluated by the photocatalytic degradation of phenol in an aqueous solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor and N. Biswas, Curr. Pollution Rep., 2, 157 (2016); https://doi.org/10.1007/s40726-016-0035-3.
- M. Bartolomeu, M.G.P.M.S. Neves, M.A.F. Faustino and A. Almeida, Photochem. Photobiol. Sci., 17, 1573 (2018); https://doi.org/10.1039/C8PP00249E.
- S.A. Ong, E. Toorisaka, M. Hirata and T. Hano, J. Hazard. Mater. B, 124, 88 (2005); https://doi.org/10.1016/j.jhazmat.2005.03.054.
- A.K. Golder, N. Hridaya, A.N. Samanta and S. Ray, J. Hazard. Mater., 127, 134 (2005); https://doi.org/10.1016/j.jhazmat.2005.06.032.
- I. Fatimah, S. Wang and D. Wulandari, Appl. Clay Sci., 53, 553 (2011); https://doi.org/10.1016/j.clay.2011.05.001.
- G. Muthuraman, T.T. Teng, C.P. Leh and I. Norli, J. Hazard. Mater., 163, 363 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.122.
- M. Bielska and K. Prochaska, Dyes Pigments, 74, 410 (2007); https://doi.org/10.1016/j.dyepig.2006.03.001.
- A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva and V.C. Almeida, Chem. Eng. J., 168, 722 (2011); https://doi.org/10.1016/j.cej.2011.01.067.
- D.Y. Goswami and D.M. Blake, Mech. Eng., 118, 56 (1996).
- W.L. McCabe, J.C. Smith and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill: Singapore (2005).
- A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, D. Ozdes, H. Serencam and M. Imamoglu, J. Chem. Eng. Data, 57, 2733 (2012); https://doi.org/10.1021/je300597u.
- V. Russo, M. Trifuoggi, M. Di Serio and R, Tesser, Chem. Eng. Technol., 40, 799 (2017); https://doi.org/10.1002/ceat.201600582.
- F. Rodriguez-Reinoso and A. Linares-Solano, Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York, vol. 21 (1989).
- C.P.J. Suhas and C.M.M. Ribeiro, Bioresour. Technol., 98, 2301 (2007); https://doi.org/10.1016/j.biortech.2006.08.008.
- A. Dabrowski, P. Podkoscielny, Z. Hubicki and M. Barczak, Chemosphere, 58, 1049 (2005); https://doi.org/10.1016/j.chemosphere.2004.09.067.
- S.J. Allen and B. Koumanova, J. Univ. Chem. Technol. Metall., 40, 175 (2005).
- L.R. Radovic, C. Moreno-Castilla and J. Rivera-Utrilla, ed.: L.R. Radovic, Chemistry and Physics of Carbon, Marcel Dekker: New York, pp. 227- 405 (2001).
- G.J. Mcdougall, J.S. Afr. Inst. Min. Metall., 91, 109 (1991).
- Y. Guo and D.A. Rockstraw, Bioresour. Technol., 98, 1513 (2007); https://doi.org/10.1016/j.biortech.2006.06.027.
- N.M. Mustapha, M.A.A. Mustajab, A.R Yacob and H.M Al-Swaidan, Journal IEEE Explore, MIM, 511-517 (2010).
- T. Watari, H. Tsubira, T. Torikai, M. Yada and S. Furuta, J. Ceram. Process. Res., 4, 177 (2003).
- W. Li, K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, Ind. Crops Prod., 28, 190 (2008); https://doi.org/10.1016/j.indcrop.2008.02.012.
- M. Jagtoyen and F. Derbyshire, Carbon, 36, 1085 (1998); https://doi.org/10.1016/S0008-6223(98)00082-7.
- B.S. Girgis and A.-N.A. El-Hendawy, Micropor. Mesopor. Mater., 52, 105 (2002); https://doi.org/10.1016/S1387-1811(01)00481-4.
- N. Muchanyereyi, L. Chiripayi, D. Shasha and M. Mupa, Br. J. Appl. Sci. Technol., 3, 648 (2013); https://doi.org/10.9734/BJAST/2014/3086.
- G.G. Stavropoulos, P. Samaras and G.P. Sakellaropoulos, J. Hazard. Mater., 151, 414 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.005.
- T.A. Robertson, W.Y. Sanchez and M.S. Roberts, J. Biomed. Nanotechnol., 6, 452 (2010); https://doi.org/10.1166/jbn.2010.1145.
- A.D. Abid, D.S. Anderson, G.K. Das, L.S. Van Winkle and I.M. Kennedy, Part. Fibre Toxicol., 10, 1 (2013); https://doi.org/10.1186/1743-8977-10-1.
- P.K. Chayande, S.P. Singh and M.K.N. Yenkie, Chem. Sci. Transc., 2, 835 (2010); https://doi.org/10.7598/cst2013.358.
- W. Zhou, P. Zhang and W. Liu, Int. J. Photoenergy, 2012, Article ID 325902 (2012); https://doi.org/10.1155/2012/325902.
- L.F. Velasco, J.B. Parra and C.O. Ania, Appl. Surf. Sci., 256, 5254 (2010); https://doi.org/10.1016/j.apsusc.2009.12.113.
- C.R. Girish and V.R. Murty, Int. Res. J. Environ. Sci., 2, 96 (2013).
- M.Z. Alam, S.A. Muyibi, M.F. Mansor and R. Wahid, J. Environ. Sci., 19, 103 (2007); https://doi.org/10.1016/S1001-0742(07)60017-5.
- J. Matos, J. Laine and J.-M. Herrmann, J. Catal., 200, 10 (2001); https://doi.org/10.1006/jcat.2001.3191.
- E.R. Bandala, M.A. Peláez, D.D. Dionysiou, S. Gelover, J. Garcia and D. Macías, J. Photochem. Photobiol. Chem., 186, 357 (2007); https://doi.org/10.1016/j.jphotochem.2006.09.005.
- W.H. Glaze, J.-W. Kang and D.H. Chapin, Ozone Sci. Eng., 9, 335 (1987); https://doi.org/10.1080/01919518708552148.
- W.H. Glaze, Environ. Sci. Technol., 21, 224 (1987); https://doi.org/10.1021/es00157a001.
- M.A. Shaheed and F.H. Hussein, J. Nanomater., 2014, Article ID 198561 (2014); https://doi.org/10.1155/2014/198561.
- N.B. Chaure, A.K. Ray and R. Capan, Semiconduct. Sci. Technol., 20, 788 (2005); https://doi.org/10.1088/0268-1242/20/8/025.
- J.X. Xu, L.P. Li, Y.J.Yan, H. Wang, X.X. Wang, X.Z. Fu and G.S. Li, J. Colloid. Interface Sci., 318, 29 (2008); https://doi.org/10.1016/j.jcis.2007.10.004.
- J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo and F. Honggan, J. Phys. Chem. Solids, 64, 615 (2003); https://doi.org/10.1016/S0022-3697(02)00362-1.
- C.T. Dinh, T.D. Nguyen, F. Kleitz and T.O. Do, ACS Nano, 3, 3737 (2009); https://doi.org/10.1021/nn900940p.
- D.L. Liao and B.Q. Liao, J. Photochem. Photobiol. Chem., 187, 363 (2007); https://doi.org/10.1016/j.jphotochem.2006.11.003.
- T. Paxton and L. Thiên-Nga, J. Phys. Rev. B, 57, 1579 (1998); https://doi.org/10.1103/PhysRevB.57.1579.
- A. Sclafani, L. Palmisano and M. Schiavello, J. Phys. Chem., 94, 829 (1990); https://doi.org/10.1021/j100365a058.
- T. Torimoto, Y. Okawa, N. Takeda and H. Yoneyama, J. Photochem. Photobiol. Chem., 103, 153 (1997); https://doi.org/10.1016/S1010-6030(96)04503-0.
- A.W.M. Ip, J.P. Barford and G. McKay, Bioresour. Technol., 99, 8909 (2008); https://doi.org/10.1016/j.biortech.2008.04.076.
- A.M. García, A.J. Hunt, V.L. Budarin, H.L. Parker, P.S. Shuttleworth, G.J. Ellis and J.H. Clark, Green Chem., 2015, 2146 (2015); https://doi.org/10.1039/C5GC00154D.
- Z. Al-Qodah and R. Shawabkah, Braz. J. Chem. Eng., 26, 127 (2009); https://doi.org/10.1590/S0104-66322009000100012.
- Liu and Zhao, BioResources, 7, 5552 (2012).
References
L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor and N. Biswas, Curr. Pollution Rep., 2, 157 (2016); https://doi.org/10.1007/s40726-016-0035-3.
M. Bartolomeu, M.G.P.M.S. Neves, M.A.F. Faustino and A. Almeida, Photochem. Photobiol. Sci., 17, 1573 (2018); https://doi.org/10.1039/C8PP00249E.
S.A. Ong, E. Toorisaka, M. Hirata and T. Hano, J. Hazard. Mater. B, 124, 88 (2005); https://doi.org/10.1016/j.jhazmat.2005.03.054.
A.K. Golder, N. Hridaya, A.N. Samanta and S. Ray, J. Hazard. Mater., 127, 134 (2005); https://doi.org/10.1016/j.jhazmat.2005.06.032.
I. Fatimah, S. Wang and D. Wulandari, Appl. Clay Sci., 53, 553 (2011); https://doi.org/10.1016/j.clay.2011.05.001.
G. Muthuraman, T.T. Teng, C.P. Leh and I. Norli, J. Hazard. Mater., 163, 363 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.122.
M. Bielska and K. Prochaska, Dyes Pigments, 74, 410 (2007); https://doi.org/10.1016/j.dyepig.2006.03.001.
A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva and V.C. Almeida, Chem. Eng. J., 168, 722 (2011); https://doi.org/10.1016/j.cej.2011.01.067.
D.Y. Goswami and D.M. Blake, Mech. Eng., 118, 56 (1996).
W.L. McCabe, J.C. Smith and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill: Singapore (2005).
A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, D. Ozdes, H. Serencam and M. Imamoglu, J. Chem. Eng. Data, 57, 2733 (2012); https://doi.org/10.1021/je300597u.
V. Russo, M. Trifuoggi, M. Di Serio and R, Tesser, Chem. Eng. Technol., 40, 799 (2017); https://doi.org/10.1002/ceat.201600582.
F. Rodriguez-Reinoso and A. Linares-Solano, Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York, vol. 21 (1989).
C.P.J. Suhas and C.M.M. Ribeiro, Bioresour. Technol., 98, 2301 (2007); https://doi.org/10.1016/j.biortech.2006.08.008.
A. Dabrowski, P. Podkoscielny, Z. Hubicki and M. Barczak, Chemosphere, 58, 1049 (2005); https://doi.org/10.1016/j.chemosphere.2004.09.067.
S.J. Allen and B. Koumanova, J. Univ. Chem. Technol. Metall., 40, 175 (2005).
L.R. Radovic, C. Moreno-Castilla and J. Rivera-Utrilla, ed.: L.R. Radovic, Chemistry and Physics of Carbon, Marcel Dekker: New York, pp. 227- 405 (2001).
G.J. Mcdougall, J.S. Afr. Inst. Min. Metall., 91, 109 (1991).
Y. Guo and D.A. Rockstraw, Bioresour. Technol., 98, 1513 (2007); https://doi.org/10.1016/j.biortech.2006.06.027.
N.M. Mustapha, M.A.A. Mustajab, A.R Yacob and H.M Al-Swaidan, Journal IEEE Explore, MIM, 511-517 (2010).
T. Watari, H. Tsubira, T. Torikai, M. Yada and S. Furuta, J. Ceram. Process. Res., 4, 177 (2003).
W. Li, K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, Ind. Crops Prod., 28, 190 (2008); https://doi.org/10.1016/j.indcrop.2008.02.012.
M. Jagtoyen and F. Derbyshire, Carbon, 36, 1085 (1998); https://doi.org/10.1016/S0008-6223(98)00082-7.
B.S. Girgis and A.-N.A. El-Hendawy, Micropor. Mesopor. Mater., 52, 105 (2002); https://doi.org/10.1016/S1387-1811(01)00481-4.
N. Muchanyereyi, L. Chiripayi, D. Shasha and M. Mupa, Br. J. Appl. Sci. Technol., 3, 648 (2013); https://doi.org/10.9734/BJAST/2014/3086.
G.G. Stavropoulos, P. Samaras and G.P. Sakellaropoulos, J. Hazard. Mater., 151, 414 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.005.
T.A. Robertson, W.Y. Sanchez and M.S. Roberts, J. Biomed. Nanotechnol., 6, 452 (2010); https://doi.org/10.1166/jbn.2010.1145.
A.D. Abid, D.S. Anderson, G.K. Das, L.S. Van Winkle and I.M. Kennedy, Part. Fibre Toxicol., 10, 1 (2013); https://doi.org/10.1186/1743-8977-10-1.
P.K. Chayande, S.P. Singh and M.K.N. Yenkie, Chem. Sci. Transc., 2, 835 (2010); https://doi.org/10.7598/cst2013.358.
W. Zhou, P. Zhang and W. Liu, Int. J. Photoenergy, 2012, Article ID 325902 (2012); https://doi.org/10.1155/2012/325902.
L.F. Velasco, J.B. Parra and C.O. Ania, Appl. Surf. Sci., 256, 5254 (2010); https://doi.org/10.1016/j.apsusc.2009.12.113.
C.R. Girish and V.R. Murty, Int. Res. J. Environ. Sci., 2, 96 (2013).
M.Z. Alam, S.A. Muyibi, M.F. Mansor and R. Wahid, J. Environ. Sci., 19, 103 (2007); https://doi.org/10.1016/S1001-0742(07)60017-5.
J. Matos, J. Laine and J.-M. Herrmann, J. Catal., 200, 10 (2001); https://doi.org/10.1006/jcat.2001.3191.
E.R. Bandala, M.A. Peláez, D.D. Dionysiou, S. Gelover, J. Garcia and D. Macías, J. Photochem. Photobiol. Chem., 186, 357 (2007); https://doi.org/10.1016/j.jphotochem.2006.09.005.
W.H. Glaze, J.-W. Kang and D.H. Chapin, Ozone Sci. Eng., 9, 335 (1987); https://doi.org/10.1080/01919518708552148.
W.H. Glaze, Environ. Sci. Technol., 21, 224 (1987); https://doi.org/10.1021/es00157a001.
M.A. Shaheed and F.H. Hussein, J. Nanomater., 2014, Article ID 198561 (2014); https://doi.org/10.1155/2014/198561.
N.B. Chaure, A.K. Ray and R. Capan, Semiconduct. Sci. Technol., 20, 788 (2005); https://doi.org/10.1088/0268-1242/20/8/025.
J.X. Xu, L.P. Li, Y.J.Yan, H. Wang, X.X. Wang, X.Z. Fu and G.S. Li, J. Colloid. Interface Sci., 318, 29 (2008); https://doi.org/10.1016/j.jcis.2007.10.004.
J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo and F. Honggan, J. Phys. Chem. Solids, 64, 615 (2003); https://doi.org/10.1016/S0022-3697(02)00362-1.
C.T. Dinh, T.D. Nguyen, F. Kleitz and T.O. Do, ACS Nano, 3, 3737 (2009); https://doi.org/10.1021/nn900940p.
D.L. Liao and B.Q. Liao, J. Photochem. Photobiol. Chem., 187, 363 (2007); https://doi.org/10.1016/j.jphotochem.2006.11.003.
T. Paxton and L. Thiên-Nga, J. Phys. Rev. B, 57, 1579 (1998); https://doi.org/10.1103/PhysRevB.57.1579.
A. Sclafani, L. Palmisano and M. Schiavello, J. Phys. Chem., 94, 829 (1990); https://doi.org/10.1021/j100365a058.
T. Torimoto, Y. Okawa, N. Takeda and H. Yoneyama, J. Photochem. Photobiol. Chem., 103, 153 (1997); https://doi.org/10.1016/S1010-6030(96)04503-0.
A.W.M. Ip, J.P. Barford and G. McKay, Bioresour. Technol., 99, 8909 (2008); https://doi.org/10.1016/j.biortech.2008.04.076.
A.M. García, A.J. Hunt, V.L. Budarin, H.L. Parker, P.S. Shuttleworth, G.J. Ellis and J.H. Clark, Green Chem., 2015, 2146 (2015); https://doi.org/10.1039/C5GC00154D.
Z. Al-Qodah and R. Shawabkah, Braz. J. Chem. Eng., 26, 127 (2009); https://doi.org/10.1590/S0104-66322009000100012.
Liu and Zhao, BioResources, 7, 5552 (2012).