Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Composite from Poly(vinyl chloride) Hydrochar and Hydrolyzate of Keratin from Chicken Feather by Hydrothermal Carbonization
Corresponding Author(s) : A. Kuncaka
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Poly(vinyl chloride) and chicken feather wastes considered as the dangerous wastes. This study aimed to characterize the prepared composite from poly(vinyl chloride) hydrochar and keratin hydrolyzate from chicken feather to get possibility the usage of this composite as soil amendment. The poly(vinyl chloride) hydrochar-keratin hydrolyzate composites (HKHC) had been produced with the hydrothermal carbonization process. The composites were made from different composition of poly(vinyl chloride):chicken feather (5:95% (HKHC5), 10:90% (HKHC10) and 15:85% (HKHC15)). The hydrothermal carbonization process would break and fracture the CHCl bond of poly(vinyl chloride). Moreover, this process would also hydrolyze keratin from chicken feather into small protein. The composite structure was formed from aromatic carbon and amino acids aggregate along with other organic substances. The solid composites and liquid residues formed in this process. The composites were characterized by FTIR, XRD and TEM and the composite of char-Fe3O4 was characterized by SEM. Meanwhile, the liquid residues were analyzed for its organochlorine by GC-MS and amino acid contents by HPLC. The results showed that all products have similar properties but the composite with ratio 5:95% (HKHC5) had the highest aromatic structure, paramagnetic (Fe3O4) crystallinity and amino acid contents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.J. Rhodes, Sci. Progr., 101, 207 (2018); https://doi.org/10.3184/003685018X15294876706211
- M. Picone, E. Delaney, D. Tagliapietra, I. Guarneri and A.V. Ghirardini, Front. Ecol. Evol., 8, 235 (2020); https://doi.org/10.3389/fevo.2020.00235
- R. Font, A. Gálvez, J. Moltó, A. Fullana and I. Aracil, Chemosphere, 78, 152 (2010); https://doi.org/10.1016/j.chemosphere.2009.09.064
- J. Poerschmann, B. Weiner, S. Woszidlo, R. Koehler and F.D. Kopinke, Chemosphere, 119, 682 (2015); https://doi.org/10.1016/j.chemosphere.2014.07.058
- P. Zhao, T. Li, W. Yan and L. Yuan, Environ. Technol., 39, 977 (2018); https://doi.org/10.1080/09593330.2017.1317841
- W. Schmidt, In Proceedings of National Poultry Waste Management Symposium, Auburn, USA, pp. 276-282 (1998).
- M.N. Acda, Sustainable Use of Waste Chicken Feather for Durable and Low Cost Building Materials for Tropical Climates, Nova Science Publisher Inc.: New York, pp. 353 (2016).
- T. Kornillowicz-Kowalska and J. Bohacz, Waste Manag., 31, 1689 (2011); https://doi.org/10.1016/j.wasman.2011.03.024
- C. Mullins and M.S. Tite, J. Geophys. Res., 78, 804 (1973); https://doi.org/10.1029/JB078i005p00804
- A. Lilliestrale, Thesis, Molecular Biotechnology Programme, Uppsala University, Uppsala, Sweden (2007).
- M. Muslem, A. Kuncaka, T.N. Himah and R. Roto, Indonesian J. Chem., 19, 835 (2019); https://doi.org/10.22146/ijc.29801
- M.H.B. Hayes and R.S. Swift, The Chemistry of Soil Organic Colloids, eds.: D.J. Greenland and M.H.B. Hayes, The Chemistry of Soil Constituents, Wiley: Chichester, pp. 179 (1978).
- A. Piccolo, Adv. Agron., 75, 57 (2002); https://doi.org/10.1016/S0065-2113(02)75003-7
- American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, New York (1975).
- E.J. Park, B.C. Park, Y.J. Kim, A. Canlier and T.S. Hwang, Macromol. Res., 26, 913 (2018); https://doi.org/10.1007/s13233-018-6123-z
- S. Sharma, A. Gupta, S.M. Saufi, C.Y. Gek Kee, P.K. Podder, M. Subramaniam and J. Thuraisingam, IIUM Eng. J. (N.Y.), 18, 47 (2017); https://doi.org/10.31436/iiumej.v18i2.806
- G. Gasco, J. Paz-Ferreiro, M.L. Álvarez, A. Saa and A. Méndez, Waste Management, 79, 395 (2018); https://doi.org/10.1016/j.wasman.2018.08.015
- Y.N. Vodyanitskii, S.N. Lesovaya and A.V. Sivtsov, Eurasian Soil Sci., 34, 774 (2001).
- Y. Qi, J. He, F. Xiu, W. Nie and M. Chen, J. Clean. Prod., 196, 331 (2018); https://doi.org/10.1016/j.jclepro.2018.06.074
- A.C. Garcia, F.G. Izquierdo and R.L.L. Berbara, Emerging Technologies and Management of Crop Stress Tolerance, Elsevier: Amsterdam, pp. 449 (2014); https://doi.org/10.1016/B978-0-12-800876-8.00018-7
References
C.J. Rhodes, Sci. Progr., 101, 207 (2018); https://doi.org/10.3184/003685018X15294876706211
M. Picone, E. Delaney, D. Tagliapietra, I. Guarneri and A.V. Ghirardini, Front. Ecol. Evol., 8, 235 (2020); https://doi.org/10.3389/fevo.2020.00235
R. Font, A. Gálvez, J. Moltó, A. Fullana and I. Aracil, Chemosphere, 78, 152 (2010); https://doi.org/10.1016/j.chemosphere.2009.09.064
J. Poerschmann, B. Weiner, S. Woszidlo, R. Koehler and F.D. Kopinke, Chemosphere, 119, 682 (2015); https://doi.org/10.1016/j.chemosphere.2014.07.058
P. Zhao, T. Li, W. Yan and L. Yuan, Environ. Technol., 39, 977 (2018); https://doi.org/10.1080/09593330.2017.1317841
W. Schmidt, In Proceedings of National Poultry Waste Management Symposium, Auburn, USA, pp. 276-282 (1998).
M.N. Acda, Sustainable Use of Waste Chicken Feather for Durable and Low Cost Building Materials for Tropical Climates, Nova Science Publisher Inc.: New York, pp. 353 (2016).
T. Kornillowicz-Kowalska and J. Bohacz, Waste Manag., 31, 1689 (2011); https://doi.org/10.1016/j.wasman.2011.03.024
C. Mullins and M.S. Tite, J. Geophys. Res., 78, 804 (1973); https://doi.org/10.1029/JB078i005p00804
A. Lilliestrale, Thesis, Molecular Biotechnology Programme, Uppsala University, Uppsala, Sweden (2007).
M. Muslem, A. Kuncaka, T.N. Himah and R. Roto, Indonesian J. Chem., 19, 835 (2019); https://doi.org/10.22146/ijc.29801
M.H.B. Hayes and R.S. Swift, The Chemistry of Soil Organic Colloids, eds.: D.J. Greenland and M.H.B. Hayes, The Chemistry of Soil Constituents, Wiley: Chichester, pp. 179 (1978).
A. Piccolo, Adv. Agron., 75, 57 (2002); https://doi.org/10.1016/S0065-2113(02)75003-7
American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, New York (1975).
E.J. Park, B.C. Park, Y.J. Kim, A. Canlier and T.S. Hwang, Macromol. Res., 26, 913 (2018); https://doi.org/10.1007/s13233-018-6123-z
S. Sharma, A. Gupta, S.M. Saufi, C.Y. Gek Kee, P.K. Podder, M. Subramaniam and J. Thuraisingam, IIUM Eng. J. (N.Y.), 18, 47 (2017); https://doi.org/10.31436/iiumej.v18i2.806
G. Gasco, J. Paz-Ferreiro, M.L. Álvarez, A. Saa and A. Méndez, Waste Management, 79, 395 (2018); https://doi.org/10.1016/j.wasman.2018.08.015
Y.N. Vodyanitskii, S.N. Lesovaya and A.V. Sivtsov, Eurasian Soil Sci., 34, 774 (2001).
Y. Qi, J. He, F. Xiu, W. Nie and M. Chen, J. Clean. Prod., 196, 331 (2018); https://doi.org/10.1016/j.jclepro.2018.06.074
A.C. Garcia, F.G. Izquierdo and R.L.L. Berbara, Emerging Technologies and Management of Crop Stress Tolerance, Elsevier: Amsterdam, pp. 449 (2014); https://doi.org/10.1016/B978-0-12-800876-8.00018-7