Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Optical, Photocatalytic and Electrochemical Properties of Cobalt Doped ZnS Nanoparticles
Corresponding Author(s) : G. Krishnamurthy
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Poly(vinyl pyrrolidone) capped and uncapped Co:ZnS nanoparticles have been synthesized by co-precipitation method. These synthesized nanoparticles were characterized using spectral techniques and the optical and photoluminescence properties of nanoparticles were also studied. Poly(vinyl pyrrolidone) capped nanoparticles has been studied for the electrochemical sensing of various biomolecules. The Co:ZnS modified glassy carbon electrode (GCE) proved to be effective nanoparticles composite electrode to detect biomolecules electrochemically with a wide linear detection range of 0.2 to 1.6 μmol/L, Also a low detection limit (LOD) of 0.06 μM/L and excellent sensitivity of 4.366 μA μM-1 has been obtained. It is observed that the particle size of nanoparticles is affected by the capping agent. It is therefore the modified electrode has become a good electrode material with a greater stability without leaching. The optical band gap was determined by UV-visible spectra and the value is found to be in the range of 3.75 to 4.00 eV. The photocatlytic activity on Eriochrome black T dye in the visible region using nanoparticles has been determined. It was found that the capped nanoparticles are more effective in photocatalytic degradation due to low energy consumption and safe recovery of it after catalytic performance from polluted water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Jithendra Kumar, G. Krishnamurthy, B.E. Kumara Swamy, N.D. Shashi Kumar, S. Naik, B.S. Krishna and N. Naik, Appl. Organomet. Chem., 31, e3549 (2016); https//doi.org/10.1002/aoc.3549
- K.R. Sumadevi and G. Krishnamurthy, P. Walmiki, R.S. Priya Rani, S. Naik, H.S. Bhojya Naik and N. Naik, Emergent Mater., 4, 447 (2021); https://doi.org/10.1007/s42247-020-00153-7
- K.S. Jithendra Kumara, G. Krishnamurthy, N. Sunil Kumar, N. Naik and T.M. Praveen, J. Magn. Magn. Mater., 451, 808 (2018); https://doi.org/10.1016/j.jmmm.2017.10.125
- S. Li, M.M. Lin, M.S. Toprak, D.K. Kim and M. Muhammed, Nano Rev., 1, 5214 (2010); https://doi.org/10.3402/nano.v1i0.5214
- W.I. Choi, J.Y. Kim, S.U. Heo, Y.Y. Jeong, Y.H. Kim and G. Tae, J. Control. Rel., 162, 267 (2012); https://doi.org/10.1016/j.jconrel.2012.07.020
- M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak and M. Mahmoudi, Trends Biotechnol., 30, 499 (2012); https://doi.org/10.1016/j.tibtech.2012.06.004
- N.R. Agarwal, F. Neri, S. Trusso, A. Lucotti and P.M. Ossi, Appl. Surf. Sci., 258, 9148 (2012); https://doi.org/10.1016/j.apsusc.2011.12.030
- Y. Dong and S.S. Feng, Int. J. Pharm., 342, 208 (2007); https://doi.org/10.1016/j.ijpharm.2007.04.031
- W. Tungittiplakorn, L.W. Lion, C. Cohen and J.-Y. Kim, Environ. Sci. Technol., 38, 1605 (2004); https://doi.org/10.1021/es0348997
- A.V. Kachynski, A.N. Kuzmin, M.M. Nyk, I. Roy and P.N. Prasad, J. Phys. Chem., 112, 10721 (2018); https://doi.org/10.1021/jp801684j
- Z. Zhou, C. Zhang, Q. Qian, J. Ma, P. Huang, X. zhang, L. Pan, G. Gao, H. Fu, S. Fu, H. Song, X. Zhi, J. Ni and D. Cui, J. Nanobiotechnology, 11, 17 (2013); https://doi.org/10.1186/1477-3155-11-17
- E.C. Cho, C. Glaus, J. Chen, M.J. Welch and Y. Xia, Trends Mol. Med., 16, 561 (2010); https://doi.org/10.1016/j.molmed.2010.09.004
- X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Lasers Med. Sci., 23, 217 (2008); https://doi.org/10.1007/s10103-007-0470-x
- T.G. Smijs and S. Pavel, Nanotechnol. Sci. Appl., 4, 95 (2011); https://doi.org/10.2147/NSA.S19419
- G.J. Nohynek, E.K. Dufour and M.S. Roberts, Skin Pharmacol. Physiol., 21, 136 (2008); https://doi.org/10.1159/000131078
- J.J. Wu and S.C. Liu, Adv. Mater., 14, 215 (2002); https://doi.org/10.1002/1521-4095(20020205)14:3<215::AIDADMA215>3.0.CO;2-J
- J. Zhong, J. Li, Z. Xiao, W. Hu, X. Zhou and X. Zheng, Mater. Lett., 91, 301 (2013); https://doi.org/10.1016/j.matlet.2012.10.040
- K.M. Parida and S. Parija, Sol. Energy, 80, 1048 (2006); https://doi.org/10.1016/j.solener.2005.04.025
- M. Farbod and M. Kajbafvala, Powder Technol., 239, 434 (2013); https://doi.org/10.1016/j.powtec.2013.02.027
- R.K. Upadhyay, M. Sharma, D.K. Singh, S.S. Amritphale and N. Chandra, Sep. Purif. Technol., 88, 39 (2012); https://doi.org/10.1016/j.seppur.2011.11.040
- P. Chandran, S. Netha, A. Ravindran and S.S. Khan, J. Colloid. Surf. B, 122, 611 (2014); https://doi.org/10.1016/j.colsurfb.2014.07.039
- P. Chandran, S. Netha and S.S. Khan, J. Photochem. Photobiol. B, 138, 155 (2014); https://doi.org/10.1016/j.jphotobiol.2014.05.013
- P. Yang, M. Lü, D. Xü, D. Yuan, C. Song and G. Zhou, J. Phys. Chem. Solids, 62, 1181 (2001); https://doi.org/10.1016/S0022-3697(00)00287-0
- H. Hu and W. Zhang, Opt. Mater., 28, 536 (2006); https://doi.org/10.1016/j.optmat.2005.03.015
- W.Q. Peng, G.W. Cong, S.C. Qu and Z.G. Wang, Opt. Mater., 29, 313 (2006); https://doi.org/10.1016/j.optmat.2005.10.003
- N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa and T. Kushida, J. Phys. Chem. B, 103, 754 (1999); https://doi.org/10.1021/jp9828179
- S. Yanagida, M. Yoshiya, T. Shiragami, C. Pac, H. Mori and H. Fujita, J. Phys. Chem., 94, 3104 (1990); https://doi.org/10.1021/j100370a066
- L. Liu, L. Yang, Y. Pu, D. Xiao and J. Zhu, Mater. Lett., 66, 121 (2012); https://doi.org/10.1016/j.matlet.2011.08.025
- S. Sambasivam, D.P. Joseph, J.G. Lin and C. Venkateswaran, J. Solid State Chem., 182, 2598 (2009); https://doi.org/10.1016/j.jssc.2009.07.015
- S. Muruganandam, G. Anbalagan and G. Murugadoss, Optik, 131, 826 (2017); https://doi.org/10.1016/j.ijleo.2016.12.001
- S. Lee, S. Song, D. Kim, J. Lee, S. Kim, I.Y. Park and Y.D. Choi, Mater. Lett., 58, 342 (2004); https://doi.org/10.1016/S0167-577X(03)00483-X
- W.Q. Peng, G.W. Cong, S.C. Quand Z.G. Wang, Opt. Mater., 29, 313 (2006); https://doi.org/10.1016/j.optmat.2005.10.003
- N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi and N. Kannadasan, Appl. Nanosci., 4, 359 (2014); https://doi.org/10.1007/s13204-013-0217-x
- N.V. Desai, I.A. Shaikh, K.G. Rawal and D.V. Shah, AIP Conf. Proc., 1953, 030149 (2018); https://doi.org/10.1063/1.5032484
- H.Y. Yue, P.F. Wu, S. Huang, X. Gao, S.S. Song, W.Q. Wang and X.R. Guo, Microchem. J., 149, 103977 (2019); https://doi.org/10.1016/j.microc.2019.103977
- N. Arif, S. Gul, M. Sohail, S. Rizwan and M. Iqbal, Ceram. Int., 47, 2388 (2021); https://doi.org/10.1016/j.ceramint.2020.09.081
- Y.J. Yang, Sens. Actuators, 22, 750 (2015); https://doi.org/10.1016/j.snb.2015.06.150
- M. Pari, K.R.V. Reddy, Fasiulla and K.B. Chandrakala, Sens. Actuators A Phys., 316, 112377 (2020); https://doi.org/10.1016/j.sna.2020.112377
- A. Numan, M.M. Shahid, F.S. Omar, K. Ramesh and S. Ramesh, Sens. Actuators B Chem., 238, 1043 (2017); https://doi.org/10.1016/j.snb.2016.07.111
- M. Pari, Mounesh, J.B. Sanna and K.R. Venugopala Reddy, Anal. Bioanal. Electrochem,, 11, 460 (2019).
- Z.T. Althagafi, J.T. Althakafy, B.A. Al-Jahdaly and M.I. Awad, J. Sensors, 2020, 8873930 (2020); https://doi.org/10.1155/2020/8873930.
- Y. Kumar, S. Pramanik and D.K. Das, Biointerf. Res. Appl. Chem., 10, 6182 (2020); https://doi.org/10.33263/BRIAC105.61826188
- G. Jiang, X. Gu, G. Jiang, T. Chen, W. Zhan and S. Tian, Sens. Actuators B Chem., 209, 122 (2015); https://doi.org/10.1016/j.snb.2014.11.109
- N. Sunil Kumar, G. Krishnamurthy, M. Somegowda, M. Pari, T.R. Ravikumar Naik, K.S. Jithedra Kumara, S. Naik, S. Kandagalla and N. Naik, J. Mol. Struct., 1220, 128586 (2020); https://doi.org/10.1016/j.molstruc.2020.128586
References
K.S. Jithendra Kumar, G. Krishnamurthy, B.E. Kumara Swamy, N.D. Shashi Kumar, S. Naik, B.S. Krishna and N. Naik, Appl. Organomet. Chem., 31, e3549 (2016); https//doi.org/10.1002/aoc.3549
K.R. Sumadevi and G. Krishnamurthy, P. Walmiki, R.S. Priya Rani, S. Naik, H.S. Bhojya Naik and N. Naik, Emergent Mater., 4, 447 (2021); https://doi.org/10.1007/s42247-020-00153-7
K.S. Jithendra Kumara, G. Krishnamurthy, N. Sunil Kumar, N. Naik and T.M. Praveen, J. Magn. Magn. Mater., 451, 808 (2018); https://doi.org/10.1016/j.jmmm.2017.10.125
S. Li, M.M. Lin, M.S. Toprak, D.K. Kim and M. Muhammed, Nano Rev., 1, 5214 (2010); https://doi.org/10.3402/nano.v1i0.5214
W.I. Choi, J.Y. Kim, S.U. Heo, Y.Y. Jeong, Y.H. Kim and G. Tae, J. Control. Rel., 162, 267 (2012); https://doi.org/10.1016/j.jconrel.2012.07.020
M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak and M. Mahmoudi, Trends Biotechnol., 30, 499 (2012); https://doi.org/10.1016/j.tibtech.2012.06.004
N.R. Agarwal, F. Neri, S. Trusso, A. Lucotti and P.M. Ossi, Appl. Surf. Sci., 258, 9148 (2012); https://doi.org/10.1016/j.apsusc.2011.12.030
Y. Dong and S.S. Feng, Int. J. Pharm., 342, 208 (2007); https://doi.org/10.1016/j.ijpharm.2007.04.031
W. Tungittiplakorn, L.W. Lion, C. Cohen and J.-Y. Kim, Environ. Sci. Technol., 38, 1605 (2004); https://doi.org/10.1021/es0348997
A.V. Kachynski, A.N. Kuzmin, M.M. Nyk, I. Roy and P.N. Prasad, J. Phys. Chem., 112, 10721 (2018); https://doi.org/10.1021/jp801684j
Z. Zhou, C. Zhang, Q. Qian, J. Ma, P. Huang, X. zhang, L. Pan, G. Gao, H. Fu, S. Fu, H. Song, X. Zhi, J. Ni and D. Cui, J. Nanobiotechnology, 11, 17 (2013); https://doi.org/10.1186/1477-3155-11-17
E.C. Cho, C. Glaus, J. Chen, M.J. Welch and Y. Xia, Trends Mol. Med., 16, 561 (2010); https://doi.org/10.1016/j.molmed.2010.09.004
X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Lasers Med. Sci., 23, 217 (2008); https://doi.org/10.1007/s10103-007-0470-x
T.G. Smijs and S. Pavel, Nanotechnol. Sci. Appl., 4, 95 (2011); https://doi.org/10.2147/NSA.S19419
G.J. Nohynek, E.K. Dufour and M.S. Roberts, Skin Pharmacol. Physiol., 21, 136 (2008); https://doi.org/10.1159/000131078
J.J. Wu and S.C. Liu, Adv. Mater., 14, 215 (2002); https://doi.org/10.1002/1521-4095(20020205)14:3<215::AIDADMA215>3.0.CO;2-J
J. Zhong, J. Li, Z. Xiao, W. Hu, X. Zhou and X. Zheng, Mater. Lett., 91, 301 (2013); https://doi.org/10.1016/j.matlet.2012.10.040
K.M. Parida and S. Parija, Sol. Energy, 80, 1048 (2006); https://doi.org/10.1016/j.solener.2005.04.025
M. Farbod and M. Kajbafvala, Powder Technol., 239, 434 (2013); https://doi.org/10.1016/j.powtec.2013.02.027
R.K. Upadhyay, M. Sharma, D.K. Singh, S.S. Amritphale and N. Chandra, Sep. Purif. Technol., 88, 39 (2012); https://doi.org/10.1016/j.seppur.2011.11.040
P. Chandran, S. Netha, A. Ravindran and S.S. Khan, J. Colloid. Surf. B, 122, 611 (2014); https://doi.org/10.1016/j.colsurfb.2014.07.039
P. Chandran, S. Netha and S.S. Khan, J. Photochem. Photobiol. B, 138, 155 (2014); https://doi.org/10.1016/j.jphotobiol.2014.05.013
P. Yang, M. Lü, D. Xü, D. Yuan, C. Song and G. Zhou, J. Phys. Chem. Solids, 62, 1181 (2001); https://doi.org/10.1016/S0022-3697(00)00287-0
H. Hu and W. Zhang, Opt. Mater., 28, 536 (2006); https://doi.org/10.1016/j.optmat.2005.03.015
W.Q. Peng, G.W. Cong, S.C. Qu and Z.G. Wang, Opt. Mater., 29, 313 (2006); https://doi.org/10.1016/j.optmat.2005.10.003
N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa and T. Kushida, J. Phys. Chem. B, 103, 754 (1999); https://doi.org/10.1021/jp9828179
S. Yanagida, M. Yoshiya, T. Shiragami, C. Pac, H. Mori and H. Fujita, J. Phys. Chem., 94, 3104 (1990); https://doi.org/10.1021/j100370a066
L. Liu, L. Yang, Y. Pu, D. Xiao and J. Zhu, Mater. Lett., 66, 121 (2012); https://doi.org/10.1016/j.matlet.2011.08.025
S. Sambasivam, D.P. Joseph, J.G. Lin and C. Venkateswaran, J. Solid State Chem., 182, 2598 (2009); https://doi.org/10.1016/j.jssc.2009.07.015
S. Muruganandam, G. Anbalagan and G. Murugadoss, Optik, 131, 826 (2017); https://doi.org/10.1016/j.ijleo.2016.12.001
S. Lee, S. Song, D. Kim, J. Lee, S. Kim, I.Y. Park and Y.D. Choi, Mater. Lett., 58, 342 (2004); https://doi.org/10.1016/S0167-577X(03)00483-X
W.Q. Peng, G.W. Cong, S.C. Quand Z.G. Wang, Opt. Mater., 29, 313 (2006); https://doi.org/10.1016/j.optmat.2005.10.003
N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi and N. Kannadasan, Appl. Nanosci., 4, 359 (2014); https://doi.org/10.1007/s13204-013-0217-x
N.V. Desai, I.A. Shaikh, K.G. Rawal and D.V. Shah, AIP Conf. Proc., 1953, 030149 (2018); https://doi.org/10.1063/1.5032484
H.Y. Yue, P.F. Wu, S. Huang, X. Gao, S.S. Song, W.Q. Wang and X.R. Guo, Microchem. J., 149, 103977 (2019); https://doi.org/10.1016/j.microc.2019.103977
N. Arif, S. Gul, M. Sohail, S. Rizwan and M. Iqbal, Ceram. Int., 47, 2388 (2021); https://doi.org/10.1016/j.ceramint.2020.09.081
Y.J. Yang, Sens. Actuators, 22, 750 (2015); https://doi.org/10.1016/j.snb.2015.06.150
M. Pari, K.R.V. Reddy, Fasiulla and K.B. Chandrakala, Sens. Actuators A Phys., 316, 112377 (2020); https://doi.org/10.1016/j.sna.2020.112377
A. Numan, M.M. Shahid, F.S. Omar, K. Ramesh and S. Ramesh, Sens. Actuators B Chem., 238, 1043 (2017); https://doi.org/10.1016/j.snb.2016.07.111
M. Pari, Mounesh, J.B. Sanna and K.R. Venugopala Reddy, Anal. Bioanal. Electrochem,, 11, 460 (2019).
Z.T. Althagafi, J.T. Althakafy, B.A. Al-Jahdaly and M.I. Awad, J. Sensors, 2020, 8873930 (2020); https://doi.org/10.1155/2020/8873930.
Y. Kumar, S. Pramanik and D.K. Das, Biointerf. Res. Appl. Chem., 10, 6182 (2020); https://doi.org/10.33263/BRIAC105.61826188
G. Jiang, X. Gu, G. Jiang, T. Chen, W. Zhan and S. Tian, Sens. Actuators B Chem., 209, 122 (2015); https://doi.org/10.1016/j.snb.2014.11.109
N. Sunil Kumar, G. Krishnamurthy, M. Somegowda, M. Pari, T.R. Ravikumar Naik, K.S. Jithedra Kumara, S. Naik, S. Kandagalla and N. Naik, J. Mol. Struct., 1220, 128586 (2020); https://doi.org/10.1016/j.molstruc.2020.128586