Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Comparative Study of Different Synthetic Methods of Copper Metal-Organic Frameworks (Cu-MOF)
Corresponding Author(s) : P.M. Thabede
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
The metal-organic framework of copper (Cu-MOF) was prepared using the reflux method and microwave method. The results of the two techniques were compared with each other to determine the best method to prepare Cu-MOF. Preparation of Cu-MOF using different techniques has shown that it influences the morphology of the MOF. The results showed that there was a correlation between the two methods. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and ultraviolet-visible (UV-Vis) spectroscopy. The SEM images showed that the microwave method synthesized particles were cubic while the reflux method produced amorphous material. The XRD spectra showed intense diffraction peaks at 2θ values of 17.61º, 20.47º, 25.34º, 29.59º, 43.01º and their miller indices were (511), (442), (731), (751) and (662), respectively. FTIR results revealed that the materials had functional groups such as (C=O, C-O, O-C=O and Cu-O), UV-visible results showed optical absorption band of Cu-MOF was at 274.18 nm for the microwav and 274.41 nm for the reflux methods. This band could be allocated to the charged transfer from the oxygen in carboxylate to Cu2+ ions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Calleja, R. Sanz, G. Orcajo, D. Briones, P. Leo and F. Martinez, Catal. Today, 227, 130 (2014); https://doi.org/10.1016/j.cattod.2013.11.062
- L. Arnold, G. Averlant, S. Marx, M. Weickert, U. Muller, J. Mertel, C. Horch, M. Peksa and F. Stallmach, Chem. Ing. Techn., 85, 1726 (2013); https://doi.org/10.1002/cite.201300093
- P. Marco-Lozar, J. Juan-Juan, F. Suarez-Garcia, D. Cazorla-Amoros and A. Linares-Solano, Int. J. Hydrogen Energy, 37, 2370 (2012); https://doi.org/10.1016/j.ijhydene.2011.11.023
- M. Pander, A. Zelichowska and W. Bury, Polyhedron, 156, 131 (2018); https://doi.org/10.1016/j.poly.2018.09.006
- P. Pei, Z. Tian and Y. Zhu, Micropor. Mesopor. Mater., 272, 24 (2018); https://doi.org/10.1016/j.micromeso.2018.06.012
- M. AL Haydar, H. Abid, B. Sunderland and S. Wang, Drug Des. Devel. Ther., 11, 2685 (2017); https://doi.org/10.2147/DDDT.S145716
- X. Fang, B. Zong and S. Mao, Nano-Micro Lett., 10, 64 (2018); https://doi.org/10.1007/s40820-018-0218-0
- A.H. Assen, O. Yassine, O. Shekhah, M. Eddaoudi and K.N. Salama, ACS Sens., 2, 1294 (2017); https://doi.org/10.1021/acssensors.7b00304
- I. Luz, F.X. Llabrés i Xamena and A. Corma, J. Catal., 276, 134 (2010); https://doi.org/10.1016/j.jcat.2010.09.010
- N.D. Shooto, D. Wankasi, L. Sikhwivhilu, E.D. Dikio, F. Mtunzi and M.S. Maubane, Dig. J. Nanomater. Biostruct., 11, 425 (2016).
- M.S. Khan, M. Khalid and M. Shahid, Mater. Adv., 1, 1575 (2020); https://doi.org/10.1039/D0MA00291G
- N.D. Shooto, C.W. Dikio, D. Wankasi, L.M. Sikhwivhilu, F.M. Mtunzi and E.D. Dikio, Nanoscale Res. Lett., 11, 414 (2016); https://doi.org/10.1186/s11671-016-1631-2
- V.K.-M. Au, Front. Chem., 8, 708 (2020); https://doi.org/10.3389/fchem.2020.00708
- D.K.J.A. Wanigarathna, J. Gao and B. Liu, Mater. Adv., 1, 310 (2020); https://doi.org/10.1039/D0MA00083C
- V. Russo, M. Hmoudah, F. Broccoli, M.R. Iesce1, O.-S. Jung and M. Di Serio, Front. Chem. Eng., 2, 581487 (2020); https://doi.org/10.3389/fceng.2020.581487
- L.W. Aguiar, C.T.P. da Silva, H.C. de Lima, M.P. Moises and A.W. Rinaldi, AIMS Mater. Sci., 5, 467 (2018); https://doi.org/10.3934/matersci.2018.3.467
- X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo and S. Deng, Micropor. Mesopor. Mater., 180, 114 (2013); https://doi.org/10.1016/j.micromeso.2013.06.023
- E. Biemmi, S. Christian, N. Stock and T. Bein, Micropor. Mesopor. Mater., 117, 111 (2009); https://doi.org/10.1016/j.micromeso.2008.06.040
- M.R. Azhar, H.R. Abid, V. Periasamy, H. Sun, M.O. Tade and S. Wang, J. Colloid Interface Sci., 500, 88 (2017); https://doi.org/10.1016/j.jcis.2017.04.001
- H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong and W.-S. Ahn, Catal. Today, 185, 35 (2012); https://doi.org/10.1016/j.cattod.2011.08.019
- J.S. Lee, S.B. Halligudi, N.K. Jang, D.W. Hwang, J.-S. Chang and Y.K. Hwang, Bull. Korean Chem. Soc., 31, 1489 (2010); https://doi.org/10.5012/bkcs.2010.31.6.1489
- J. Ren, T. Segakweng, H.W. Langmi, N.M. Musyoka, B.C. North, M. Mathe and D. Bessarabov, Int. J. Mater. Res., 105, 516 (2014); https://doi.org/10.3139/146.111047
- E. Haque, N.A. Khan, J.H. Park and S.H. Jhung, Chem. Eur. J., 16, 1046 (2010); https://doi.org/10.1002/chem.200902382
- E.N. Augustus, A. Nimibofa, I.A. Kesiye and W. Donbebe, Am. J. Environ. Prot., 5, 61 (2017); https://doi.org/10.12691/env-5-2-5
- N.D. Shooto, E.D. Dikio, D. Wankasi and L.M. Sikhwivhilu, Hem. Ind., 71, 221 (2017); https://doi.org/10.2298/HEMIND160120032S
- N.E. Tari, A. Tadjarodi, J. Tamnanloo and S. Fatemi, Micropor. Mesopor. Mater., 231, 154 (2016); https://doi.org/10.1016/j.micromeso.2016.05.027
- C.G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R.A. Gerhardt and R. Tannenbaum, Eur. J. Inorg. Chem., 2009, 2338 (2009); https://doi.org/10.1002/ejic.200801224
- W.Y. Siew, N.H.H. Abu Bakar and M. Abu Bakar, Inorg. Chim. Acta, 482, 53 (2018); https://doi.org/10.1016/j.ica.2018.05.008
- N.K. Gupta, S. Kim, J. Bae and K.S. Kim, RSC Adv., 11, 4890 (2021); https://doi.org/10.1039/D0RA09017D
References
G. Calleja, R. Sanz, G. Orcajo, D. Briones, P. Leo and F. Martinez, Catal. Today, 227, 130 (2014); https://doi.org/10.1016/j.cattod.2013.11.062
L. Arnold, G. Averlant, S. Marx, M. Weickert, U. Muller, J. Mertel, C. Horch, M. Peksa and F. Stallmach, Chem. Ing. Techn., 85, 1726 (2013); https://doi.org/10.1002/cite.201300093
P. Marco-Lozar, J. Juan-Juan, F. Suarez-Garcia, D. Cazorla-Amoros and A. Linares-Solano, Int. J. Hydrogen Energy, 37, 2370 (2012); https://doi.org/10.1016/j.ijhydene.2011.11.023
M. Pander, A. Zelichowska and W. Bury, Polyhedron, 156, 131 (2018); https://doi.org/10.1016/j.poly.2018.09.006
P. Pei, Z. Tian and Y. Zhu, Micropor. Mesopor. Mater., 272, 24 (2018); https://doi.org/10.1016/j.micromeso.2018.06.012
M. AL Haydar, H. Abid, B. Sunderland and S. Wang, Drug Des. Devel. Ther., 11, 2685 (2017); https://doi.org/10.2147/DDDT.S145716
X. Fang, B. Zong and S. Mao, Nano-Micro Lett., 10, 64 (2018); https://doi.org/10.1007/s40820-018-0218-0
A.H. Assen, O. Yassine, O. Shekhah, M. Eddaoudi and K.N. Salama, ACS Sens., 2, 1294 (2017); https://doi.org/10.1021/acssensors.7b00304
I. Luz, F.X. Llabrés i Xamena and A. Corma, J. Catal., 276, 134 (2010); https://doi.org/10.1016/j.jcat.2010.09.010
N.D. Shooto, D. Wankasi, L. Sikhwivhilu, E.D. Dikio, F. Mtunzi and M.S. Maubane, Dig. J. Nanomater. Biostruct., 11, 425 (2016).
M.S. Khan, M. Khalid and M. Shahid, Mater. Adv., 1, 1575 (2020); https://doi.org/10.1039/D0MA00291G
N.D. Shooto, C.W. Dikio, D. Wankasi, L.M. Sikhwivhilu, F.M. Mtunzi and E.D. Dikio, Nanoscale Res. Lett., 11, 414 (2016); https://doi.org/10.1186/s11671-016-1631-2
V.K.-M. Au, Front. Chem., 8, 708 (2020); https://doi.org/10.3389/fchem.2020.00708
D.K.J.A. Wanigarathna, J. Gao and B. Liu, Mater. Adv., 1, 310 (2020); https://doi.org/10.1039/D0MA00083C
V. Russo, M. Hmoudah, F. Broccoli, M.R. Iesce1, O.-S. Jung and M. Di Serio, Front. Chem. Eng., 2, 581487 (2020); https://doi.org/10.3389/fceng.2020.581487
L.W. Aguiar, C.T.P. da Silva, H.C. de Lima, M.P. Moises and A.W. Rinaldi, AIMS Mater. Sci., 5, 467 (2018); https://doi.org/10.3934/matersci.2018.3.467
X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo and S. Deng, Micropor. Mesopor. Mater., 180, 114 (2013); https://doi.org/10.1016/j.micromeso.2013.06.023
E. Biemmi, S. Christian, N. Stock and T. Bein, Micropor. Mesopor. Mater., 117, 111 (2009); https://doi.org/10.1016/j.micromeso.2008.06.040
M.R. Azhar, H.R. Abid, V. Periasamy, H. Sun, M.O. Tade and S. Wang, J. Colloid Interface Sci., 500, 88 (2017); https://doi.org/10.1016/j.jcis.2017.04.001
H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong and W.-S. Ahn, Catal. Today, 185, 35 (2012); https://doi.org/10.1016/j.cattod.2011.08.019
J.S. Lee, S.B. Halligudi, N.K. Jang, D.W. Hwang, J.-S. Chang and Y.K. Hwang, Bull. Korean Chem. Soc., 31, 1489 (2010); https://doi.org/10.5012/bkcs.2010.31.6.1489
J. Ren, T. Segakweng, H.W. Langmi, N.M. Musyoka, B.C. North, M. Mathe and D. Bessarabov, Int. J. Mater. Res., 105, 516 (2014); https://doi.org/10.3139/146.111047
E. Haque, N.A. Khan, J.H. Park and S.H. Jhung, Chem. Eur. J., 16, 1046 (2010); https://doi.org/10.1002/chem.200902382
E.N. Augustus, A. Nimibofa, I.A. Kesiye and W. Donbebe, Am. J. Environ. Prot., 5, 61 (2017); https://doi.org/10.12691/env-5-2-5
N.D. Shooto, E.D. Dikio, D. Wankasi and L.M. Sikhwivhilu, Hem. Ind., 71, 221 (2017); https://doi.org/10.2298/HEMIND160120032S
N.E. Tari, A. Tadjarodi, J. Tamnanloo and S. Fatemi, Micropor. Mesopor. Mater., 231, 154 (2016); https://doi.org/10.1016/j.micromeso.2016.05.027
C.G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R.A. Gerhardt and R. Tannenbaum, Eur. J. Inorg. Chem., 2009, 2338 (2009); https://doi.org/10.1002/ejic.200801224
W.Y. Siew, N.H.H. Abu Bakar and M. Abu Bakar, Inorg. Chim. Acta, 482, 53 (2018); https://doi.org/10.1016/j.ica.2018.05.008
N.K. Gupta, S. Kim, J. Bae and K.S. Kim, RSC Adv., 11, 4890 (2021); https://doi.org/10.1039/D0RA09017D