Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of Protonation Constants of Viral Inhibitor, Aurintricarboxylic Acid in SDS and CTAB Micellar Media: A Potentiometric Study
Corresponding Author(s) : P. Shyamala
Asian Journal of Chemistry,
Vol. 33 No. 10 (2021): Vol 33 Issue 10, 2021
Abstract
Protonation constants of a viral inhibitor, aurintricarboxylic acid were determined using potentiometric method of data acquisition followed by chemometric modelling methods of analysis in the presence of two different kinds of micellar media, CTAB, a cationic micelle and SDS, an anionic micelle. MINIQUAD75 program was used for the determination of the plausible species and their corresponding formation constants at 303 ± 0.1 K and 0.01 M ionic strength. Five formation constants were identified corresponding to five ionizable hydrogens. Species concentration distribution diagrams were generated using Origin software. Best-fit chemical models were selected on the basis of statistical parameters like standard deviation (SD), U (sum of the squares of the residuals in mass balance equations) and chi-square test. It was found that the formation constants are lower in CTAB micellar medium while there is no significant change in the presence of SDS compared to aqueous medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.V. Bazunova, F.R. Gimaeva, R.A. Mustakimov, V.G. Shamratova, L.A. Sharafutdinova and E.I. Kulish, Inorg. Mater.: Appl. Res., 8, 734 (2017); https://doi.org/10.1134/S2075113317050069
- E. Pramauro and A.B. Prevot, Pure Appl. Chem., 67, 551 (1995); https://doi.org/10.1351/pac199567040551
- P. Srinivasa Rao, B. Srikanth, V. Samba Siva Rao, C. Kamala Sastry and G. Nageswara Rao, E-J. Chem., 6, 561 (2009).
- T. Yamashita, K. Tanaka, H. Yano and S. Harada, J. Chem. Soc., Faraday Trans., 87, 1857 (1991); https://doi.org/10.1039/ft9918701857
- W.H. Smith, E.E. Sager and I.J. Siewers, Anal. Chem., 21, 1334 (1949); https://doi.org/10.1021/ac60035a008
- P. Grollman and M.L. Stewart, Proc. Natl. Acad. Sci. USA, 61, 719 (1968); https://doi.org/10.1073/pnas.61.2.719
- S. Pestka, Proc. Natl. Acad. Sci. USA, 64, 709 (1969); https://doi.org/10.1073/pnas.64.2.709
- A. Marcus, J.D. Bewley and D.P. Weeks, Science, 167, 1735 (1970); https://doi.org/10.1126/science.167.3926.1735
- E. Battaner and D. Vazquez, Biochim. Biophys. Acta, 254, 316 (1971); https://doi.org/10.1016/0005-2787(71)90840-9
- W. Hoerz and K.S. McCarty, Biochim. Biophys. Acta, 228, 526 (1971); https://doi.org/10.1016/0005-2787(71)90058-X
- M.B. Mathews, FEBS Lett., 15, 201 (1971); https://doi.org/10.1016/0014-5793(71)80311-3
- T. Hultin and H. Nika, FEBS Lett., 51, 184 (1975); https://doi.org/10.1016/0014-5793(75)80883-0
- C. Strehblow, W. Sperker, A. Hevesi, R. Garamvolgyi, Z. Petrasi, M. Shirazi, C. Sylven, T. Weiss, C. Lotan, T. Pugatsch, S.A. Ben-Sasson, M. Orlowski, D. Glogar and M. Gyongyosi, J. Endovasc. Ther., 13, 94 (2006); https://doi.org/10.1583/05-1641.1
- H. Cho, D.Y. Lee, S. Shrestha, Y.S. Shim, K.C. Kim, M.K. Kim and K.H. Lee, J. Won and J.-S. Kang, Mol. Cell, 18, 46 (2004).
- D.Y. Lee, M.K. Kim, M.J. Kim, B.R. Bhattarai, B.L. Kafle, K.H. Lee, J.S. Kang and H. Cho, Bull. Korean Chem. Soc., 29, 342 (2008); https://doi.org/10.5012/bkcs.2008.29.2.342
- M. Cushman, P.L. Wang, S.H. Chang, C. Wild, E. Declercq, D. Schols, M.E. Goldman and J.A. Bowen, J. Med. Chem., 34, 329 (1991); https://doi.org/10.1021/jm00105a052
- M. Cushman, S. Kanamathareddy, E. Declercq, D. Schols, M.E. Goldman and J.A. Bowen, J. Med. Chem., 34, 337 (1991); https://doi.org/10.1021/jm00105a053
- C. Myskiw, Y. Deschambault, K. Jefferies, R.T. He and J.X. Cao, J. Virol., 81, 3027 (2007); https://doi.org/10.1128/JVI.02531-06
- Y.L. Yap, X.W. Zhang, A. Andonov and R.T. He, Comput. Biol. Chem., 29, 212 (2005); https://doi.org/10.1016/j.compbiolchem.2005.04.006
- W. Walther, U. Stein, R. Siegel, I. Fichtner and P.M. Schlag, J. Gene Med., 7, 477 (2005); https://doi.org/10.1002/jgm.690
- H.C. Hung, C.P. Tseng, J.M. Yang, Y.W. Ju, S.N. Tseng, Y.F. Chen, Y.S. Chao, H.P. Hsieh, S.R. Shih and J.T.A. Hsu, Antiviral Res., 81, 123 (2009); https://doi.org/10.1016/j.antiviral.2008.10.006
- H.C. Hung, T.C. Chen, M.Y. Fang, K.J. Yen, S.R. Shih, J.T.A. Hsu and C.P.J. Tseng, Antimicrob. Chemother., 65, 676 (2010); https://doi.org/10.1093/jac/dkp502
- G. Gran, Analyst, 77, 661 (1952); https://doi.org/10.1039/an9527700661
- G. Gran, Anal. Chim. Acta, 206, 111 (1988); https://doi.org/10.1016/S0003-2670(00)80835-1
- R.S. Rao and G.N. Rao, Computer Applications in Chemistry, Himalaya Publishing House: Mumbai, India, pp. 302-309 (2005).
- G.S. Hartley, Trans. Faraday Soc., 30, 444 (1934); https://doi.org/10.1039/tf9343000444
References
M.V. Bazunova, F.R. Gimaeva, R.A. Mustakimov, V.G. Shamratova, L.A. Sharafutdinova and E.I. Kulish, Inorg. Mater.: Appl. Res., 8, 734 (2017); https://doi.org/10.1134/S2075113317050069
E. Pramauro and A.B. Prevot, Pure Appl. Chem., 67, 551 (1995); https://doi.org/10.1351/pac199567040551
P. Srinivasa Rao, B. Srikanth, V. Samba Siva Rao, C. Kamala Sastry and G. Nageswara Rao, E-J. Chem., 6, 561 (2009).
T. Yamashita, K. Tanaka, H. Yano and S. Harada, J. Chem. Soc., Faraday Trans., 87, 1857 (1991); https://doi.org/10.1039/ft9918701857
W.H. Smith, E.E. Sager and I.J. Siewers, Anal. Chem., 21, 1334 (1949); https://doi.org/10.1021/ac60035a008
P. Grollman and M.L. Stewart, Proc. Natl. Acad. Sci. USA, 61, 719 (1968); https://doi.org/10.1073/pnas.61.2.719
S. Pestka, Proc. Natl. Acad. Sci. USA, 64, 709 (1969); https://doi.org/10.1073/pnas.64.2.709
A. Marcus, J.D. Bewley and D.P. Weeks, Science, 167, 1735 (1970); https://doi.org/10.1126/science.167.3926.1735
E. Battaner and D. Vazquez, Biochim. Biophys. Acta, 254, 316 (1971); https://doi.org/10.1016/0005-2787(71)90840-9
W. Hoerz and K.S. McCarty, Biochim. Biophys. Acta, 228, 526 (1971); https://doi.org/10.1016/0005-2787(71)90058-X
M.B. Mathews, FEBS Lett., 15, 201 (1971); https://doi.org/10.1016/0014-5793(71)80311-3
T. Hultin and H. Nika, FEBS Lett., 51, 184 (1975); https://doi.org/10.1016/0014-5793(75)80883-0
C. Strehblow, W. Sperker, A. Hevesi, R. Garamvolgyi, Z. Petrasi, M. Shirazi, C. Sylven, T. Weiss, C. Lotan, T. Pugatsch, S.A. Ben-Sasson, M. Orlowski, D. Glogar and M. Gyongyosi, J. Endovasc. Ther., 13, 94 (2006); https://doi.org/10.1583/05-1641.1
H. Cho, D.Y. Lee, S. Shrestha, Y.S. Shim, K.C. Kim, M.K. Kim and K.H. Lee, J. Won and J.-S. Kang, Mol. Cell, 18, 46 (2004).
D.Y. Lee, M.K. Kim, M.J. Kim, B.R. Bhattarai, B.L. Kafle, K.H. Lee, J.S. Kang and H. Cho, Bull. Korean Chem. Soc., 29, 342 (2008); https://doi.org/10.5012/bkcs.2008.29.2.342
M. Cushman, P.L. Wang, S.H. Chang, C. Wild, E. Declercq, D. Schols, M.E. Goldman and J.A. Bowen, J. Med. Chem., 34, 329 (1991); https://doi.org/10.1021/jm00105a052
M. Cushman, S. Kanamathareddy, E. Declercq, D. Schols, M.E. Goldman and J.A. Bowen, J. Med. Chem., 34, 337 (1991); https://doi.org/10.1021/jm00105a053
C. Myskiw, Y. Deschambault, K. Jefferies, R.T. He and J.X. Cao, J. Virol., 81, 3027 (2007); https://doi.org/10.1128/JVI.02531-06
Y.L. Yap, X.W. Zhang, A. Andonov and R.T. He, Comput. Biol. Chem., 29, 212 (2005); https://doi.org/10.1016/j.compbiolchem.2005.04.006
W. Walther, U. Stein, R. Siegel, I. Fichtner and P.M. Schlag, J. Gene Med., 7, 477 (2005); https://doi.org/10.1002/jgm.690
H.C. Hung, C.P. Tseng, J.M. Yang, Y.W. Ju, S.N. Tseng, Y.F. Chen, Y.S. Chao, H.P. Hsieh, S.R. Shih and J.T.A. Hsu, Antiviral Res., 81, 123 (2009); https://doi.org/10.1016/j.antiviral.2008.10.006
H.C. Hung, T.C. Chen, M.Y. Fang, K.J. Yen, S.R. Shih, J.T.A. Hsu and C.P.J. Tseng, Antimicrob. Chemother., 65, 676 (2010); https://doi.org/10.1093/jac/dkp502
G. Gran, Analyst, 77, 661 (1952); https://doi.org/10.1039/an9527700661
G. Gran, Anal. Chim. Acta, 206, 111 (1988); https://doi.org/10.1016/S0003-2670(00)80835-1
R.S. Rao and G.N. Rao, Computer Applications in Chemistry, Himalaya Publishing House: Mumbai, India, pp. 302-309 (2005).
G.S. Hartley, Trans. Faraday Soc., 30, 444 (1934); https://doi.org/10.1039/tf9343000444