Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Ni-Cu/Al2O3 Catalyst for Hydrodeoxygenation of Karanja Oil
Corresponding Author(s) : Sunder Lal Pal
Asian Journal of Chemistry,
Vol. 29 No. 3 (2017): Vol 29 Issue 3
Abstract
Bio-oil is considered as a potential alternative for conventional fossils fuel. The aim of the present study is the preparation and characterization of Ni-Cu/Al2O3 using impregnation methods for the hydrodeoxygenation of karanja oils. It can be catalytically converted to bio-fuels by hydrodeoxygenation process. There is a need to develop a low cost catalyst, which can reduce the operating condition for hydrodeoxygenation process. The Ni-Cu catalyst over alumina is developed and characterized for application in the reaction of karanja oil at low temperature and pressure. The catalyst Ni-Cu was developed by wet impregnation method and was subsequently loaded on alumina. The loaded catalyst was characterized by FTIR, SEM and XRD to analyze their structure and structural morphology and there potential application for the hydrodeoxygenation process at low temperature and pressure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Arun, R.V. Sharma and A.K. Dalai, Renew. Sustain. Energy Rev., 48, 240 (2015).
- P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen and A.D. Jensen, ACS Catal., 3, 1774 (2013).
- Wang, Y. Yang, H. Luo and W. Liu, Catal. Commun., 11, 803 (2010).
- H.W. Lee, S.J. Choi, S.H. Park, J.-K. Jeon, S.-C. Jung, S.H. Joo and Y.-K. Park, Energy, 66, 2 (2014).
- H.W. Lee, B.R. Jun, H. Kim, D.H. Kim, J.-K. Jeon, S.H. Park, C.H. Ko, T.-W. Kim and Y.-K. Park, Energy, 81, 33 (2015).
- P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen and A.D. Jensen, Appl. Catal. A Gen., 407, 1 (2011).
- B. Jiang, H. Yang, L. Zhang, R. Zhang, Y. Sun and Y. Huang, Chem. Eng. J., 283, 89 (2016).
- Q. Guo, M. Wu, K. Wang, L. Zhang and X. Xu, Ind. Eng. Chem. Res., 54, 890 (2015).
- R.V. Chaudhari, A. Torres, X. Jin and B. Subramaniam, Ind. Eng. Chem. Res., 52, 15226 (2013).
- W. Shi, Y. Gao, S. Song and Y. Zhao, Ind. Eng. Chem. Res., 53, 11557 (2014).
- V.V. Thyssen, T.A. Maia and E.M. Assaf, J. Braz. Chem. Soc., 26, 22 (2015).
- L. Tuan, N. Luong and K. Ishihara, Catalysts, 6, 45 (2016).
- I. Gandarias, J. Requies, P.L. Arias, U. Armbruster and A. Martin, J. Catal., 290, 79 (2012).
- W. Wang, G. Zhu, L. Li, S. Tan, K. Wu, X. Zhang and Y. Yang, Fuel, 174, 1 (2016).
- N. Rahemi, M. Haghighi, A.A. Babaluo, S. Allahyari and M.F. Jafari, Energy Convers. Manage., 84, 50 (2014).
- S. Lal and D. Pant, Asian J. Chem., 28, 1447 (2016).
References
N. Arun, R.V. Sharma and A.K. Dalai, Renew. Sustain. Energy Rev., 48, 240 (2015).
P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen and A.D. Jensen, ACS Catal., 3, 1774 (2013).
Wang, Y. Yang, H. Luo and W. Liu, Catal. Commun., 11, 803 (2010).
H.W. Lee, S.J. Choi, S.H. Park, J.-K. Jeon, S.-C. Jung, S.H. Joo and Y.-K. Park, Energy, 66, 2 (2014).
H.W. Lee, B.R. Jun, H. Kim, D.H. Kim, J.-K. Jeon, S.H. Park, C.H. Ko, T.-W. Kim and Y.-K. Park, Energy, 81, 33 (2015).
P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen and A.D. Jensen, Appl. Catal. A Gen., 407, 1 (2011).
B. Jiang, H. Yang, L. Zhang, R. Zhang, Y. Sun and Y. Huang, Chem. Eng. J., 283, 89 (2016).
Q. Guo, M. Wu, K. Wang, L. Zhang and X. Xu, Ind. Eng. Chem. Res., 54, 890 (2015).
R.V. Chaudhari, A. Torres, X. Jin and B. Subramaniam, Ind. Eng. Chem. Res., 52, 15226 (2013).
W. Shi, Y. Gao, S. Song and Y. Zhao, Ind. Eng. Chem. Res., 53, 11557 (2014).
V.V. Thyssen, T.A. Maia and E.M. Assaf, J. Braz. Chem. Soc., 26, 22 (2015).
L. Tuan, N. Luong and K. Ishihara, Catalysts, 6, 45 (2016).
I. Gandarias, J. Requies, P.L. Arias, U. Armbruster and A. Martin, J. Catal., 290, 79 (2012).
W. Wang, G. Zhu, L. Li, S. Tan, K. Wu, X. Zhang and Y. Yang, Fuel, 174, 1 (2016).
N. Rahemi, M. Haghighi, A.A. Babaluo, S. Allahyari and M.F. Jafari, Energy Convers. Manage., 84, 50 (2014).
S. Lal and D. Pant, Asian J. Chem., 28, 1447 (2016).