Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Investigations of Structural, Optical and AC Conductivity Properties of PANI/CeO2 Nanocomposites
Corresponding Author(s) : E. Kumar
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
This paper explains the details on the preparation of polyaniline/CeO2 (10 wt %) nanocomposites using the method of in situ polymerization. The formation of PANI/CeO2 nanocomposites were proposed via oxidation of aniline and reduction of CeO2, respectively. The effect of CeO2 concentration on AC conductivity, morphological, optical and structural properties of the prepared PANI/CeO2 nanocomposites material were examined. The structural studies show the presence of CeO2 nanoparticles were occurred in PANI of nanocomposites. The average grain size of PANI/CeO2 nanocomposites varied with increasing and decreasing concentration due to the process of nucleation during the polymerization. The average particle grain sizes were measured from HRTEM. The morphology analysis was carried out from SEM. The UV absorption spectrum showed that the absorption peak of CeO2 nanoparticle at 341 nm, shifted to lower wavelength side, the nanocomposite absorption peaks at about 324, 368 and 858 nm was confirmed by the formation of PANI/CeO2 nanocomposites. The electronic structure of the band gap of the nanocomposite materials were calculated using ultraviolet visible absorption spectrum. The band gap energy of nanocomposite is 3.36 eV. The FTIR spectrum clearly showed the strong presence of CeO2 nanoparticles in PANI chain. The AC conductivity varied with varying the temperature and depends on the concentration due to the formation of PANI/CeO2 nanocomposite.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.G. Koniuszewska and J.W. Kaczmar, Prog. Rubber Plast. Recycl. Technol., 32, 1 (2016); https://doi.org/10.1177/147776061603200101.
- T. Hanemann and D.V. Szabo, Mater., 3, 3468 (2010); https://doi.org/10.3390/ma3063468.
- J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra and S. Duhan, Biotechnol. Rep., 15, 11 (2017); https://doi.org/10.1016/j.btre.2017.03.002.
- D.R. Paul and L.M. Robeson, Polymer, 49, 3187 (2008); https://doi.org/10.1016/j.polymer.2008.04.017.
- A.L. Porter and J. Youtie, J. Nanopart. Res., 11, 1023 (2009); https://doi.org/10.1007/s11051-009-9607-0.
- S. Kumar, Int. Res. J. Eng. Technol., 3, 479 (2016).
- A. Meftah, E. Gharibshahi, N. Soltani, W. Yunus and E. Saion, Polymers, 6, 2435 (2014); https://doi.org/10.3390/polym6092435.
- R. Balint, N.J. Cassidy and S.H. Cartmell, Acta Biomater., 10, 2341 (2014); https://doi.org/10.1016/j.actbio.2014.02.015.
- C. Dhand, M. Das, G. Sumana, A.K. Srivastava, M.K. Pandey, C.G. Kim, M. Datta and B.D. Malhotra, Nanoscale, 2, 747 (2010); https://doi.org/10.1039/b9nr00346k.
- D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang and G.-H. Hu, ACS Appl. Mater. Interfaces, 4, 6273 (2012); https://doi.org/10.1021/am3018652.
- S. Rajeshkumar and P. Naik, Biotechnol. Rep., 17, 1 (2018); https://doi.org/10.1016/j.btre.2017.11.008.
- G. Jayakumar, A.A. Irudayaraj and A.D. Raj, Mechan. Mater. Sci. Eng., 9, 1 (2017).
- E. Kumar, S.C. Vella Durai, L.G. Prasad, D. Muthuraj and V.B. Jothy, J. Mater. Environ. Sci., 8, 3490 (2017).
- R. Sharma, R. Malik, S. Lamba and S. Annapoorni, Bull. Mater. Sci., 31, 409 (2008); https://doi.org/10.1007/s12034-008-0064-7.
- E. Kumar, P. Selvarajan and D. Muthuraj, Mater. Res., 16, 269 (2013); https://doi.org/10.1590/S1516-14392013005000021.
- K.K. Babitha, A. Sreedevi, K.P. Priyanga, B. Sabu and T. Varghese, Indian J. Pure Appl. Phys., 53, 596 (2015).
- S.S. ammal, V. Shally, M.P. dharshini and G. Jayam, Int. J. Eng. Trends Technol., 49, 69 (2017); https://doi.org/10.14445/22315381/IJETT-V49P211.
- S. Vijayalakshmi, Int. J. Eng. Res. Computer Sci. Eng., 5, 750 (2018).
- B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, K. Chaitra, V.R. Thomas, M. Revanasiddappa and N. Kathyayini, Bull. Mater. Sci., 39, 667 (2016); https://doi.org/10.1007/s12034-016-1196-9.
- D.S. Bai and R.P. Suvarna, Indian J. Sci. Technol., 10, 1 (2017). Fares, Nat. Sci., 3, 1034 (2011); https://doi.org/10.4236/ns.2011.312129.
References
A.G. Koniuszewska and J.W. Kaczmar, Prog. Rubber Plast. Recycl. Technol., 32, 1 (2016); https://doi.org/10.1177/147776061603200101.
T. Hanemann and D.V. Szabo, Mater., 3, 3468 (2010); https://doi.org/10.3390/ma3063468.
J.S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra and S. Duhan, Biotechnol. Rep., 15, 11 (2017); https://doi.org/10.1016/j.btre.2017.03.002.
D.R. Paul and L.M. Robeson, Polymer, 49, 3187 (2008); https://doi.org/10.1016/j.polymer.2008.04.017.
A.L. Porter and J. Youtie, J. Nanopart. Res., 11, 1023 (2009); https://doi.org/10.1007/s11051-009-9607-0.
S. Kumar, Int. Res. J. Eng. Technol., 3, 479 (2016).
A. Meftah, E. Gharibshahi, N. Soltani, W. Yunus and E. Saion, Polymers, 6, 2435 (2014); https://doi.org/10.3390/polym6092435.
R. Balint, N.J. Cassidy and S.H. Cartmell, Acta Biomater., 10, 2341 (2014); https://doi.org/10.1016/j.actbio.2014.02.015.
C. Dhand, M. Das, G. Sumana, A.K. Srivastava, M.K. Pandey, C.G. Kim, M. Datta and B.D. Malhotra, Nanoscale, 2, 747 (2010); https://doi.org/10.1039/b9nr00346k.
D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang and G.-H. Hu, ACS Appl. Mater. Interfaces, 4, 6273 (2012); https://doi.org/10.1021/am3018652.
S. Rajeshkumar and P. Naik, Biotechnol. Rep., 17, 1 (2018); https://doi.org/10.1016/j.btre.2017.11.008.
G. Jayakumar, A.A. Irudayaraj and A.D. Raj, Mechan. Mater. Sci. Eng., 9, 1 (2017).
E. Kumar, S.C. Vella Durai, L.G. Prasad, D. Muthuraj and V.B. Jothy, J. Mater. Environ. Sci., 8, 3490 (2017).
R. Sharma, R. Malik, S. Lamba and S. Annapoorni, Bull. Mater. Sci., 31, 409 (2008); https://doi.org/10.1007/s12034-008-0064-7.
E. Kumar, P. Selvarajan and D. Muthuraj, Mater. Res., 16, 269 (2013); https://doi.org/10.1590/S1516-14392013005000021.
K.K. Babitha, A. Sreedevi, K.P. Priyanga, B. Sabu and T. Varghese, Indian J. Pure Appl. Phys., 53, 596 (2015).
S.S. ammal, V. Shally, M.P. dharshini and G. Jayam, Int. J. Eng. Trends Technol., 49, 69 (2017); https://doi.org/10.14445/22315381/IJETT-V49P211.
S. Vijayalakshmi, Int. J. Eng. Res. Computer Sci. Eng., 5, 750 (2018).
B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, K. Chaitra, V.R. Thomas, M. Revanasiddappa and N. Kathyayini, Bull. Mater. Sci., 39, 667 (2016); https://doi.org/10.1007/s12034-016-1196-9.
D.S. Bai and R.P. Suvarna, Indian J. Sci. Technol., 10, 1 (2017). Fares, Nat. Sci., 3, 1034 (2011); https://doi.org/10.4236/ns.2011.312129.