Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
in vitro DNA Binding, Anticancer and Molecular Docking Studies of New Sydnone Compounds
Corresponding Author(s) : C. Rajendra Singh
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
Sydnones have been a novel class of mesoionic compound due to versatility of their applications in various fields. Sydnone derivative have seen as an interesting structure grouped in the heterocyclic community, which is having regions of both positive and negative charges linked with a poly-heteroatomic system. This structural characteristic allows them to cross biological membranes and interact with biomolecules. Four sydnones namely 3-(4-decyloxybiphenyl-4′-yl) sydnone (MC-176), 3-(4-octyloxy-2,3-difluorobiphenyl-4′-yl) sydnone (MC-192), 3-(4-biphenyl-4′-yl) sydnone (MC-450) and 3-(4-butylbiphenyl-4′-yl) sydnone (MC-456) were evaluated for biophysical interactions between DNA and sydnones and antiproliferative activity. The UV-visible spectroscopic study indicates interaction between sydnone and dsDNA with a slight red and hypochromic shift in absorption spectra, which shows the intercalation mode of binding. The binding constant of DNA-Sydnone complexes were in the range from 1.4 × 104 M–1 to 7.1 × 104 M–1 for different sydnone compounds (MC-176, MC-192, MC-450, MC-456). FTIR spectra indicated that sydnone interaction with DNA occurs through base pairs and the phosphate backbone of the DNA. The cytotoxic and apoptotic effects of a sydnone derivatives on human cervical cancer (HeLa) and breast tumor (BT) 474 cancer cell lines were determined. The compounds possess antiproliferative activity in a concentration-dependent mode. The changes of morphological characteristic of cancer cells were determined by fluorescent staining techniques indicate the apoptotic cell death. The molecular docking studies of sydnone compounds with caspase 3 and EGF-TK showed better interactions (according to docking score) along with commercially available breast cancer drug molecule anastrozole. The docking score of sydnone molecules (MC-456, MC-450, MC-192 and MC-176) with EGF-TK enzyme were -6.44, -6.42, -5.46 and -4.53, respectively. The binding energy of anastrozole with EGF-TK was -6.41. As well Caspase 3 inhibition with sydnone compounds MC-456, MC-450, MC-192 and MC-176 were -6.09, -6.48, -5 and -3.49, respectively. The binding energy of anastrozole with caspase 3 was -6.24. All sydnone compounds were studied for ADME toxicity studies along with Lipinski rule of five to assess their drug likeness properties by in silico approach. MC-450 found to have good ADMET (absorption, distribution, metabolism, excretion and toxicology) properties among all the sydnone compounds. Thus, the present work indicates that these sydnone compounds would be a well prospective in developing anticancer medicines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, CA Cancer J. Clin., 71, 209 (2021); https://doi.org/10.3322/caac.21660
- J.R. Benson, I. Jatoi, M. Keisch, F.J. Esteva, A. Makris and V.C. Jordan, Lancet, 373, 1463 (2009); https://doi.org/10.1016/S0140-6736(09)60316-0
- S. Paul, B. Dash, A.J. Bora and B. Gupta, Int. J. Curr. Pharm. Res., 10, 59 (2018); https://doi.org/10.22159/ijcpr.2018v10i4.28466
- C.-C. Tsai, J. Jamison and T. Miller, New Drug Paradigm: Liquid Crystal Pharmaceuticals, Kent State University (2007) https://www.sciencedaily.com/releases/2007/09/070906135516.htm
- F. Reinitzer, Liq. Cryst., 9, 421 (1888); https://doi.org/10.1007/BF01516710
- L.B. Kier and E.B. Roche, J. Pharm. Sci., 56, 149 (1967); https://doi.org/10.1002/jps.2600560202
- U. Fischer and K. Schulze-Osthoff, Pharmacol. Rev., 57, 187 (2005); https://doi.org/10.1124/pr.57.2.6
- B. Weber, A. Serafin, J. Michie, C. Van Rensburg, J.C. Swarts and L. Bohm, Anticancer Res., 24(2B), 763 (2004).
- S.W. Fesik, Nat. Rev. Cancer, 5, 995 (2005); https://doi.org/10.1038/nrc1776
- M. García-Valverde and T. Torroba, Molecules, 10, 318 (2005); https://doi.org/10.3390/10020318
- N. Grynberg, T. Gomes, T. Shinzato, A. Echevarria and J. Miller, Anticancer Res., 12, 1025 (1992).
- L.E. Mihajlovic, A. Savic, J. Poljarevic, I. Vuèkovic, M. Bulatovic, M. Mojic, D. Maksimovic-Ivanic, S. Mijatovic, G.N. Kaluderovic, S. StosicGrujièic, Ð. Miljkovic, S. Grguric-Šipka and T.J. Sabo, J. Inorg. Biochem., 109, 40 (2012); https://doi.org/10.1016/j.jinorgbio.2012.01.012
- A. Caliskan, H. Karadeniz, A. Meric and A. Erdem, Anal. Sci., 26, 117 (2010); https://doi.org/10.2116/analsci.26.117
- S.K. Kim and B. Nordén, FEBS Lett., 315, 61 (1993); https://doi.org/10.1016/0014-5793(93)81133-K
- B. Nguyen, D. Hamelberg, C. Bailly, P. Colson, J. Stanek, R. Brun, S. Neidle and W. David Wilson, Biophys. J., 86, 1028 (2004); https://doi.org/10.1016/S0006-3495(04)74178-8
- S.T. Saito, G. Silva, C. Pungartnik and M. Brendel, J. Photochem. Photobiol. B, 111, 59 (2012); https://doi.org/10.1016/j.jphotobiol.2012.03.012
- A. Senff-Ribeiro, A. Echevarria, E.F. Silva, C.R. Franco, S.S. Veiga and M.B. Oliveira, Br. J. Cancer, 91, 297 (2004); https://doi.org/10.1038/sj.bjc.6601946
- J. Wang and L. Urban, Drug Discov. World Fall, 5, 73 (2004).
- A.P. Li, Drug Discov. Today, 6, 357 (2001); https://doi.org/10.1016/s1359-6446(01)01712-3
- S. Usha, I.M. Johnson and R. Malathi, J. Biochem. Mol. Biol., 38, 198 (2005); https://doi.org/10.5483/BMBRep.2005.38.2.198
- W. Tian, C. Chen, X. Lei, J. Zhao and J. Liang, Nucleic Acids Res., 46, 363 (2018); https://doi.org/10.1093/nar/gky473
- G. Hemamalini, P. Jithesh and P. Nirmala, Int. J. Pharm. Sci. Res., 5, 2374 (2014); https://doi.org/10.13040/IJPSR.0975-8232.5(6).2374-81
- T.W. Backman, Y. Cao and T. Girke, Nucleic Acids Res., 9(Web Server issue), W486 (2011); https://doi.org/10.1093/nar/gkr320
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme and M. Schroeder, Nucleic Acids Res., 43, 443 (2015); https://doi.org/10.1093/nar/gkv315
- R. Fahrrolfes, S. Bietz, F. Flachsenberg, A. Meyder, E. Nittinger, T. Otto, A. Volkamer and M. Rarey, Nucleic Acids Res., 45, 337 (2017); https://doi.org/10.1093/nar/gkx333
- K. Stierand, P.C. Maass and M. Rarey, Bioinformatics, 22, 1710 (2006); https://doi.org/10.1093/bioinformatics/btl150
- E. Taillandier and J. Liquier, Methods Enzymol., 211, 307 (1992); https://doi.org/10.1016/0076-6879(92)11018-E
- D.M. Loprete and K.A. Hartman, Biochemistry, 32, 4077 (1993); https://doi.org/10.1021/bi00066a032
- A.A. Ouameur and H.A. Tajmir-Riahi, J. Biol. Chem., 279, 42041 (2004); https://doi.org/10.1074/jbc.M406053200
- D.K. Jangir, S. Charak, R. Mehrotra and S. Kundu, J. Photochem. Photobiol. B, 105, 143 (2011); https://doi.org/10.1016/j.jphotobiol.2011.08.003
- M. Tsuboi, Appl. Spectrosc. Rev., 3, 45 (1970); https://doi.org/10.1080/05704927008081687
- S. de Almeida, E. Lafayette, L. da Silva, C. Amorim, T. de Oliveira, A. Ruiz, J. de Carvalho, R. de Moura, E. Beltrão, M. de Lima and L. Júnior, Int. J. Mol. Sci., 16, 13023 (2015); https://doi.org/10.3390/ijms160613023
- G.S. Kumar, M.A. Ali, T.S. Choon and K.J.R. Prasad, J. Chem. Sci., 128, 391 (2016); https://doi.org/10.1007/s12039-015-1025-5
- M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
- S. Nafisi, M. Bonsaii, P. Maali, M.A. Khalil Zadeh and F. Manouchehri, J. Photochem. Photobiol., 100, 84 (2010); https://doi.org/10.1016/j.jphotobiol.2010.05.005
- S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel and D.R. Green, CSH Protocols, 3, 4493 (2006); https://doi.org/10.1101/pdb.prot4493
- M. Ghorab, M.S. Bashandy and M.S. Alsaid, Acta Pharm., 64, 419 (2014); https://doi.org/10.2478/acph-2014-0035
- L.F. Galuppo, F.A. dos Reis Lívero, G.G. Martins, C.C. Cardoso, O.C. Beltrame, L.M.B. Klassen, A.V.S. Canuto, A. Echevarria, J.E.Q. Telles, G. Klassen and A. Acco, Basic Clin. Pharmacol. Toxicol., 119, 41 (2016); https://doi.org/10.1111/bcpt.12545
References
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, CA Cancer J. Clin., 71, 209 (2021); https://doi.org/10.3322/caac.21660
J.R. Benson, I. Jatoi, M. Keisch, F.J. Esteva, A. Makris and V.C. Jordan, Lancet, 373, 1463 (2009); https://doi.org/10.1016/S0140-6736(09)60316-0
S. Paul, B. Dash, A.J. Bora and B. Gupta, Int. J. Curr. Pharm. Res., 10, 59 (2018); https://doi.org/10.22159/ijcpr.2018v10i4.28466
C.-C. Tsai, J. Jamison and T. Miller, New Drug Paradigm: Liquid Crystal Pharmaceuticals, Kent State University (2007) https://www.sciencedaily.com/releases/2007/09/070906135516.htm
F. Reinitzer, Liq. Cryst., 9, 421 (1888); https://doi.org/10.1007/BF01516710
L.B. Kier and E.B. Roche, J. Pharm. Sci., 56, 149 (1967); https://doi.org/10.1002/jps.2600560202
U. Fischer and K. Schulze-Osthoff, Pharmacol. Rev., 57, 187 (2005); https://doi.org/10.1124/pr.57.2.6
B. Weber, A. Serafin, J. Michie, C. Van Rensburg, J.C. Swarts and L. Bohm, Anticancer Res., 24(2B), 763 (2004).
S.W. Fesik, Nat. Rev. Cancer, 5, 995 (2005); https://doi.org/10.1038/nrc1776
M. García-Valverde and T. Torroba, Molecules, 10, 318 (2005); https://doi.org/10.3390/10020318
N. Grynberg, T. Gomes, T. Shinzato, A. Echevarria and J. Miller, Anticancer Res., 12, 1025 (1992).
L.E. Mihajlovic, A. Savic, J. Poljarevic, I. Vuèkovic, M. Bulatovic, M. Mojic, D. Maksimovic-Ivanic, S. Mijatovic, G.N. Kaluderovic, S. StosicGrujièic, Ð. Miljkovic, S. Grguric-Šipka and T.J. Sabo, J. Inorg. Biochem., 109, 40 (2012); https://doi.org/10.1016/j.jinorgbio.2012.01.012
A. Caliskan, H. Karadeniz, A. Meric and A. Erdem, Anal. Sci., 26, 117 (2010); https://doi.org/10.2116/analsci.26.117
S.K. Kim and B. Nordén, FEBS Lett., 315, 61 (1993); https://doi.org/10.1016/0014-5793(93)81133-K
B. Nguyen, D. Hamelberg, C. Bailly, P. Colson, J. Stanek, R. Brun, S. Neidle and W. David Wilson, Biophys. J., 86, 1028 (2004); https://doi.org/10.1016/S0006-3495(04)74178-8
S.T. Saito, G. Silva, C. Pungartnik and M. Brendel, J. Photochem. Photobiol. B, 111, 59 (2012); https://doi.org/10.1016/j.jphotobiol.2012.03.012
A. Senff-Ribeiro, A. Echevarria, E.F. Silva, C.R. Franco, S.S. Veiga and M.B. Oliveira, Br. J. Cancer, 91, 297 (2004); https://doi.org/10.1038/sj.bjc.6601946
J. Wang and L. Urban, Drug Discov. World Fall, 5, 73 (2004).
A.P. Li, Drug Discov. Today, 6, 357 (2001); https://doi.org/10.1016/s1359-6446(01)01712-3
S. Usha, I.M. Johnson and R. Malathi, J. Biochem. Mol. Biol., 38, 198 (2005); https://doi.org/10.5483/BMBRep.2005.38.2.198
W. Tian, C. Chen, X. Lei, J. Zhao and J. Liang, Nucleic Acids Res., 46, 363 (2018); https://doi.org/10.1093/nar/gky473
G. Hemamalini, P. Jithesh and P. Nirmala, Int. J. Pharm. Sci. Res., 5, 2374 (2014); https://doi.org/10.13040/IJPSR.0975-8232.5(6).2374-81
T.W. Backman, Y. Cao and T. Girke, Nucleic Acids Res., 9(Web Server issue), W486 (2011); https://doi.org/10.1093/nar/gkr320
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme and M. Schroeder, Nucleic Acids Res., 43, 443 (2015); https://doi.org/10.1093/nar/gkv315
R. Fahrrolfes, S. Bietz, F. Flachsenberg, A. Meyder, E. Nittinger, T. Otto, A. Volkamer and M. Rarey, Nucleic Acids Res., 45, 337 (2017); https://doi.org/10.1093/nar/gkx333
K. Stierand, P.C. Maass and M. Rarey, Bioinformatics, 22, 1710 (2006); https://doi.org/10.1093/bioinformatics/btl150
E. Taillandier and J. Liquier, Methods Enzymol., 211, 307 (1992); https://doi.org/10.1016/0076-6879(92)11018-E
D.M. Loprete and K.A. Hartman, Biochemistry, 32, 4077 (1993); https://doi.org/10.1021/bi00066a032
A.A. Ouameur and H.A. Tajmir-Riahi, J. Biol. Chem., 279, 42041 (2004); https://doi.org/10.1074/jbc.M406053200
D.K. Jangir, S. Charak, R. Mehrotra and S. Kundu, J. Photochem. Photobiol. B, 105, 143 (2011); https://doi.org/10.1016/j.jphotobiol.2011.08.003
M. Tsuboi, Appl. Spectrosc. Rev., 3, 45 (1970); https://doi.org/10.1080/05704927008081687
S. de Almeida, E. Lafayette, L. da Silva, C. Amorim, T. de Oliveira, A. Ruiz, J. de Carvalho, R. de Moura, E. Beltrão, M. de Lima and L. Júnior, Int. J. Mol. Sci., 16, 13023 (2015); https://doi.org/10.3390/ijms160613023
G.S. Kumar, M.A. Ali, T.S. Choon and K.J.R. Prasad, J. Chem. Sci., 128, 391 (2016); https://doi.org/10.1007/s12039-015-1025-5
M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
S. Nafisi, M. Bonsaii, P. Maali, M.A. Khalil Zadeh and F. Manouchehri, J. Photochem. Photobiol., 100, 84 (2010); https://doi.org/10.1016/j.jphotobiol.2010.05.005
S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel and D.R. Green, CSH Protocols, 3, 4493 (2006); https://doi.org/10.1101/pdb.prot4493
M. Ghorab, M.S. Bashandy and M.S. Alsaid, Acta Pharm., 64, 419 (2014); https://doi.org/10.2478/acph-2014-0035
L.F. Galuppo, F.A. dos Reis Lívero, G.G. Martins, C.C. Cardoso, O.C. Beltrame, L.M.B. Klassen, A.V.S. Canuto, A. Echevarria, J.E.Q. Telles, G. Klassen and A. Acco, Basic Clin. Pharmacol. Toxicol., 119, 41 (2016); https://doi.org/10.1111/bcpt.12545