Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tin Doped Barium Titanate (BaTiO3) Synthesized through Molten Salt Method as Promising Dielectric Material
Corresponding Author(s) : Richa Tomar
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
Tin doped barium titanate (BaTiO3) was prepared through NaCl-KCl eutectic melt at 800 ºC. The synthesized materials were well characterized using powder-X-ray diffraction (PXRD) and FESEM-EDX spectroscopy. Cubic structure was observed in the PXRD pattern of tin doped sample. The crystallite size of tin doped barium titanate nanoparticles was found to be around 17 nm. Nanorods and aggregated nanocubes like structure were observed in the FESEM images and elemental ratio of doped ions was confirmed by energy dispersive X-ray spectrum (EDX). Electrical properties observed for the synthesized material were found better than those reported in the literature prepared by other methods. The dielectric constant and dielectric loss were measured in the temperature range of 100-400 K and the frequencies varying from 10 kHz to 10,000 kHz. The tin doped barium titanate showed rod type morphology with an unprecedented high dielectric constant of ~17,500 at 10 Hz. Dielectric constant values decreased with increasing frequency. The change in dielectric constant with frequency was well explained by Maxwell-Wanger polarization effect. The impedance and ionic transference number (tion) were also measured.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.G. Baraskar, P.S. Kadhane, T.C. Darvade, A.R. James and R.C. Kamble, Ferroelectrics and their Applications, IntechOpen, Chap. 7, p. 113 (2018).
- S. Nayak, B. Sahoo, T.K. Chaki and D. Khastgir, RSC Adv., 4, 1212 (2014); https://doi.org/10.1039/C3RA44815K
- K.I. Osman, Ph.D. Thesis, Synthesis and Characterization of BaTiO3 Ferroelectric Material, Faculty of Engineering, Cairo University, Egypt (2011).
- R. Tomar, R. Pandey, N.B. Singh, M.K. Gupta and P. Gupta, SN Appl. Sci., 2, 226 (2020); https://doi.org/10.1007/s42452-020-2017-8
- R. Tomar, R. Prajapati, S. Verma and N. Rana, Mater. Today Proc., 34, 608 (2021); https://doi.org/10.1016/j.matpr.2020.01.543
- S.K. Upadhyay, V.R. Reddy, P. Bag, R. Rawat, S.M. Gupta and A. Gupta, Appl. Phys. Lett., 105, 112907 (2014); https://doi.org/10.1063/1.4896044
- A. Taibi, S. Chaguetmi, A. Louaer, A. Layachi and H. Satha, Thermochim. Acta, 680, 178356 (2019); https://doi.org/10.1016/j.tca.2019.178356
- Y. Hou, L. Yang, X. Qian, T. Zhang and Q.M. Zhang, Phil. Trans. R. Soc. A, 374, 20160055 (2016); https://doi.org/10.1098/rsta.2016.0055
- S. Suzuki, T. Takeda, A. Ando and H. Takagi, Appl. Phys. Lett., 96, 132903 (2010); https://doi.org/10.1063/1.3367733
- S. Suzuki, T. Takeda, A. Ando, T. Oyama, N. Wada, H. Niimi and H. Takagi, Jpn. J. Appl. Phys., 49, 09MC04 (2010); https://doi.org/10.1143/JJAP.49.09MC04
- K.C. Singh, A.K. Nath, R. Laishram and O.P. Thakur, J. Alloys Compd., 509, 2597 (2011); https://doi.org/10.1016/j.jallcom.2010.11.106
- W. Liu, J. Wang, X. Ke and S. Li, J. Alloys Compd., 712, 1 (2017); https://doi.org/10.1016/j.jallcom.2017.04.013
- M.J. Ansaree and S. Upadhyay, Emerg. Mater. Res., 6, 21 (2017); https://doi.org/10.1680/jemmr.16.00013
- J. Wang, S. Jiang, D. Jiang, T. Wang and H. Yao, Ceram. Int., 39, 3657 (2013); https://doi.org/10.1016/j.ceramint.2012.10.195
- Y. Xie, S. Yin, T. Hashimoto, H. Kimura and T. Sato, J. Mater. Sci., 44, 4834 (2009); https://doi.org/10.1007/s10853-009-3737-8
- B.G. Jeyaprakash, R.A. Kumar, K. Kesavan and A. Amalarani, Am. J. Sci., 6, 22 (2010).
- A. Kumar, N. Yadav, M. Bhatt, N.K. Mishra, P. Chaudhary and R. Singh, Res. J. Chem. Sci., 5, 98 (2015).
- Y. Zhang, L. Wang and D. Xue, Powder Technol., 217, 629 (2012); https://doi.org/10.1016/j.powtec.2011.11.043
- S.K. Gupta and Y. Mao, Prog. Mater. Sci., 117, 100734 (2021); https://doi.org/10.1016/j.pmatsci.2020.100734
- P. Xue, H. Wu, W. Xia, Z. Pei, Y. Lu and X. Zhu, J. Am. Ceram. Soc., 102, 2325 (2019); https://doi.org/10.1111/jace.16123
- J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988); https://doi.org/10.1016/0079-6786(88)90005-2
- S.-W. Ding, J. Chai and C.-Y. Feng, Mater. Lett., 60, 3241 (2006); https://doi.org/10.1016/j.matlet.2006.02.087
- M.A. Ansari and K. Sreenivas, Ceram. Int., 45, 20738 (2019); https://doi.org/10.1016/j.ceramint.2019.07.058
- H. Inaba, J. Mater. Sci., 32, 1867 (1997); https://doi.org/10.1023/A:1018561024682
- M.H. Abdullah and A.N. Yusoff, J. Mater. Sci., 32, 5817 (1997); https://doi.org/10.1023/A:1018690322459
- K. Surana, P.K. Singh, B. Bhattacharya, C.S. Verma and R.M. Mehra, Ceram. Int., 41, 5093 (2015); https://doi.org/10.1016/j.ceramint.2014.12.080
References
B.G. Baraskar, P.S. Kadhane, T.C. Darvade, A.R. James and R.C. Kamble, Ferroelectrics and their Applications, IntechOpen, Chap. 7, p. 113 (2018).
S. Nayak, B. Sahoo, T.K. Chaki and D. Khastgir, RSC Adv., 4, 1212 (2014); https://doi.org/10.1039/C3RA44815K
K.I. Osman, Ph.D. Thesis, Synthesis and Characterization of BaTiO3 Ferroelectric Material, Faculty of Engineering, Cairo University, Egypt (2011).
R. Tomar, R. Pandey, N.B. Singh, M.K. Gupta and P. Gupta, SN Appl. Sci., 2, 226 (2020); https://doi.org/10.1007/s42452-020-2017-8
R. Tomar, R. Prajapati, S. Verma and N. Rana, Mater. Today Proc., 34, 608 (2021); https://doi.org/10.1016/j.matpr.2020.01.543
S.K. Upadhyay, V.R. Reddy, P. Bag, R. Rawat, S.M. Gupta and A. Gupta, Appl. Phys. Lett., 105, 112907 (2014); https://doi.org/10.1063/1.4896044
A. Taibi, S. Chaguetmi, A. Louaer, A. Layachi and H. Satha, Thermochim. Acta, 680, 178356 (2019); https://doi.org/10.1016/j.tca.2019.178356
Y. Hou, L. Yang, X. Qian, T. Zhang and Q.M. Zhang, Phil. Trans. R. Soc. A, 374, 20160055 (2016); https://doi.org/10.1098/rsta.2016.0055
S. Suzuki, T. Takeda, A. Ando and H. Takagi, Appl. Phys. Lett., 96, 132903 (2010); https://doi.org/10.1063/1.3367733
S. Suzuki, T. Takeda, A. Ando, T. Oyama, N. Wada, H. Niimi and H. Takagi, Jpn. J. Appl. Phys., 49, 09MC04 (2010); https://doi.org/10.1143/JJAP.49.09MC04
K.C. Singh, A.K. Nath, R. Laishram and O.P. Thakur, J. Alloys Compd., 509, 2597 (2011); https://doi.org/10.1016/j.jallcom.2010.11.106
W. Liu, J. Wang, X. Ke and S. Li, J. Alloys Compd., 712, 1 (2017); https://doi.org/10.1016/j.jallcom.2017.04.013
M.J. Ansaree and S. Upadhyay, Emerg. Mater. Res., 6, 21 (2017); https://doi.org/10.1680/jemmr.16.00013
J. Wang, S. Jiang, D. Jiang, T. Wang and H. Yao, Ceram. Int., 39, 3657 (2013); https://doi.org/10.1016/j.ceramint.2012.10.195
Y. Xie, S. Yin, T. Hashimoto, H. Kimura and T. Sato, J. Mater. Sci., 44, 4834 (2009); https://doi.org/10.1007/s10853-009-3737-8
B.G. Jeyaprakash, R.A. Kumar, K. Kesavan and A. Amalarani, Am. J. Sci., 6, 22 (2010).
A. Kumar, N. Yadav, M. Bhatt, N.K. Mishra, P. Chaudhary and R. Singh, Res. J. Chem. Sci., 5, 98 (2015).
Y. Zhang, L. Wang and D. Xue, Powder Technol., 217, 629 (2012); https://doi.org/10.1016/j.powtec.2011.11.043
S.K. Gupta and Y. Mao, Prog. Mater. Sci., 117, 100734 (2021); https://doi.org/10.1016/j.pmatsci.2020.100734
P. Xue, H. Wu, W. Xia, Z. Pei, Y. Lu and X. Zhu, J. Am. Ceram. Soc., 102, 2325 (2019); https://doi.org/10.1111/jace.16123
J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988); https://doi.org/10.1016/0079-6786(88)90005-2
S.-W. Ding, J. Chai and C.-Y. Feng, Mater. Lett., 60, 3241 (2006); https://doi.org/10.1016/j.matlet.2006.02.087
M.A. Ansari and K. Sreenivas, Ceram. Int., 45, 20738 (2019); https://doi.org/10.1016/j.ceramint.2019.07.058
H. Inaba, J. Mater. Sci., 32, 1867 (1997); https://doi.org/10.1023/A:1018561024682
M.H. Abdullah and A.N. Yusoff, J. Mater. Sci., 32, 5817 (1997); https://doi.org/10.1023/A:1018690322459
K. Surana, P.K. Singh, B. Bhattacharya, C.S. Verma and R.M. Mehra, Ceram. Int., 41, 5093 (2015); https://doi.org/10.1016/j.ceramint.2014.12.080