Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Induced Surface-Mediated Highly Efficient Regioselective Nitration of Aromatic Compounds: Effects of Penetration Depth
Corresponding Author(s) : Aparna Das
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
Surface mediated highly regioselective nitration of aromatic compounds under diverse microwave-induced conditions was investigated in this work. The effects of the penetration depth of the surfaces were found to be more crucial than other dielectric parameters. Despite significant progress of microwave-induced reactions, no reports have examined the penetration depth of the surfaces used in these processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.F. Becker and B.K. Banik, Bioorg. Med. Chem. Lett., 8, 2877 (1998); https://doi.org/10.1016/S0960-894X(98)00520-4
- G.A. Olah, R. Malhotra and S.C. Narang, Nitration: Methods and Mechanisms, VCH, New York (1989).
- K. Schofield, Aromatic Nitration, Cambridge University Press, London (1980).
- S. Samajdar, F.F. Becker and B.K. Banik, Tetrahedron Lett., 41, 8017 (2000); https://doi.org/10.1016/S0040-4039(00)01397-6
- A. Cornelis, L. Delaude, A. Gerstmans and P. Laszlo, Tetrahedron Lett., 29, 5657 (1988); https://doi.org/10.1016/S0040-4039(00)80837-0
- P. Laszlo and J. Vandormael, Chem. Lett., 17, 1843 (1988); https://doi.org/10.1246/cl.1988.1843
- J.M. Riego, Z. Sedin, J. Zaldívar, N.C. Marziano and C. Tortato, Tetrahedron Lett., 37, 513 (1996); https://doi.org/10.1016/0040-4039(95)02174-4
- B. Gigante, Â.O. Prazeres, M.J. Marcelo-Curto, A. Cornelis and P. Laszlo, J. Org. Chem., 60, 3445 (1995); https://doi.org/10.1021/jo00116a034
- A. Cornelis, P. Laszlo and P. Pennetreau, J. Org. Chem., 48, 4771 (1983); https://doi.org/10.1021/jo00172a062
- A. Cornelis and P. Laszlo, Synthesis, 909 (1985); https://doi.org/10.1055/s-1985-31382
- S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, John Wiley & Sons (2013).
- S. Singh, D. Gupta, V. Jain and A.K. Sharma, Mater. Manuf. Process., 30, 1 (2015); https://doi.org/10.1080/10426914.2014.952028
- S.C. Ameta, P.B. Punjabi, R. Ameta and C. Ameta, Microwave-Assisted Organic Synthesis: A Green Chemical Approach, CRC Press (2014).
- A. Bose, P. Sanjoto, S. Villarreal, H. Aguilar and B.K. Banik, Tetrahedron Lett., 48, 3945 (2007); https://doi.org/10.1016/j.tetlet.2007.04.050
- A.C. Metaxas, Foundations of Electroheat: A Unified Approach, John Wiley & Sons (1996).
- T. Kim, J. Lee and K.-H. Lee, Carbon Lett., 15, 15 (2014); https://doi.org/10.5714/CL.2014.15.1.015
- P. Cintas, P. Veronesi, C. Leonelli, G. Keglevich, Z. Mucsi, M. Radoiu, A. de la Hoz, P. Prieto, Y. Wada and D. Mochizuki, Microwave Chemistry, Walter de Gruyter GmbH & Co KG (2017).
- D.A. Ellerbruch, Electromagnetic Attenuation Properties of Clay and Gravel Soils, National Bureau of Standards, Gaithersburg, MD, p. NBS IR 74-381 (1974).
- https://www.microdenshi.co.jp/en/microwave/
- D. Nowak, Arch Foundry Eng., 17, 115 (2017); https://doi.org/10.1515/afe-2017-0140
- P.A. Webley and J. Zhang, Adsorption, 20, 201 (2014); https://doi.org/10.1007/s10450-013-9563-y
- P.J. Kropp, G.W. Breton, J.D. Fields, J.C. Tung and B.R. Loomis, J. Am. Chem. Soc., 122, 4280 (2000); https://doi.org/10.1021/ja9940569
References
F.F. Becker and B.K. Banik, Bioorg. Med. Chem. Lett., 8, 2877 (1998); https://doi.org/10.1016/S0960-894X(98)00520-4
G.A. Olah, R. Malhotra and S.C. Narang, Nitration: Methods and Mechanisms, VCH, New York (1989).
K. Schofield, Aromatic Nitration, Cambridge University Press, London (1980).
S. Samajdar, F.F. Becker and B.K. Banik, Tetrahedron Lett., 41, 8017 (2000); https://doi.org/10.1016/S0040-4039(00)01397-6
A. Cornelis, L. Delaude, A. Gerstmans and P. Laszlo, Tetrahedron Lett., 29, 5657 (1988); https://doi.org/10.1016/S0040-4039(00)80837-0
P. Laszlo and J. Vandormael, Chem. Lett., 17, 1843 (1988); https://doi.org/10.1246/cl.1988.1843
J.M. Riego, Z. Sedin, J. Zaldívar, N.C. Marziano and C. Tortato, Tetrahedron Lett., 37, 513 (1996); https://doi.org/10.1016/0040-4039(95)02174-4
B. Gigante, Â.O. Prazeres, M.J. Marcelo-Curto, A. Cornelis and P. Laszlo, J. Org. Chem., 60, 3445 (1995); https://doi.org/10.1021/jo00116a034
A. Cornelis, P. Laszlo and P. Pennetreau, J. Org. Chem., 48, 4771 (1983); https://doi.org/10.1021/jo00172a062
A. Cornelis and P. Laszlo, Synthesis, 909 (1985); https://doi.org/10.1055/s-1985-31382
S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, John Wiley & Sons (2013).
S. Singh, D. Gupta, V. Jain and A.K. Sharma, Mater. Manuf. Process., 30, 1 (2015); https://doi.org/10.1080/10426914.2014.952028
S.C. Ameta, P.B. Punjabi, R. Ameta and C. Ameta, Microwave-Assisted Organic Synthesis: A Green Chemical Approach, CRC Press (2014).
A. Bose, P. Sanjoto, S. Villarreal, H. Aguilar and B.K. Banik, Tetrahedron Lett., 48, 3945 (2007); https://doi.org/10.1016/j.tetlet.2007.04.050
A.C. Metaxas, Foundations of Electroheat: A Unified Approach, John Wiley & Sons (1996).
T. Kim, J. Lee and K.-H. Lee, Carbon Lett., 15, 15 (2014); https://doi.org/10.5714/CL.2014.15.1.015
P. Cintas, P. Veronesi, C. Leonelli, G. Keglevich, Z. Mucsi, M. Radoiu, A. de la Hoz, P. Prieto, Y. Wada and D. Mochizuki, Microwave Chemistry, Walter de Gruyter GmbH & Co KG (2017).
D.A. Ellerbruch, Electromagnetic Attenuation Properties of Clay and Gravel Soils, National Bureau of Standards, Gaithersburg, MD, p. NBS IR 74-381 (1974).
https://www.microdenshi.co.jp/en/microwave/
D. Nowak, Arch Foundry Eng., 17, 115 (2017); https://doi.org/10.1515/afe-2017-0140
P.A. Webley and J. Zhang, Adsorption, 20, 201 (2014); https://doi.org/10.1007/s10450-013-9563-y
P.J. Kropp, G.W. Breton, J.D. Fields, J.C. Tung and B.R. Loomis, J. Am. Chem. Soc., 122, 4280 (2000); https://doi.org/10.1021/ja9940569