Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Properties of Oil Shale Ash Filled Polypropylene Composite Material: Mechanical and Physical Characterization
Corresponding Author(s) : Raid Banat
Asian Journal of Chemistry,
Vol. 33 No. 9 (2021): Vol 33 Issue 9, 2021
Abstract
The outcome of oil shale ash (OSA) filler addition on the mechanical, morphological, thermal and water uptake properties of the polypropylene (PP) matrix was investigated. The test specimens were prepared with various ratios of the mixtures that contain OSA and polypropylene in the following weight percentages: 0%, 10%, 20%, 30% and 40% OSA in polymer matrix. Composites specimens were produced by using a co-rotating twin screw extruder and a thermal press machine. The properties of the polymer composite specimens were characterized by using a universal testing machine (WDW-5) and izod impact testing machine (FI-68). The morphology of the composite samples was also characterized by using the scanning electron microscopy (SEM). Impact strength and Young’s modulus of the OSA/PP composite formulations were consistently improved on OSA inclusion. On the other hand, addition of OSA to pure polypropylene had consistently reduced the tensile stress at yield, tensile stress at rupture, tensile strain at yield and tensile strain at break. Adding OSA to polypropylene decreased the maximum flexural stress and flexural strain of maximum force. The observed SEM confirmed that the addition of OSA to pure polypropylene resulted in a significant increase in its agglomerates and filler pullout. Differential scanning calorimetry (DSC) results confirmed the addition of the OSA to pure polypropylene resulted in a significant decrease in normalized heat of crystallization, normalized enthalpy of melting. Where the degree of the crystallinity (Xc) of polymer composite decreased from 59% to 34% for 0% and 40% OSA addition, respectively. While melting temperature (Tm) of the composite did not change (167 °C) the crystallization temperature (Tc) increased from 116.6 °C to 127.1 ºC for 0% to 40% OSA addition, respectively. Water uptake, however, demonstrated different behaviour. The initial addition of OSA to polypropylene increased the water uptake property up to 4% for the 40% filler addition. The results of this study demonstrated that the OSA could be used as reinforcement material for polypropylene, as long as good mechanical properties and homogeneous morphology obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Gahleitner and and C. Paulik, Polypropylene, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Germany (2014).
- A.L. Andrady and M.A. Neal, Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 1977 (2009); https://doi.org/10.1098/rstb.2008.0304
- T.H. Shubhra, A.K.M.M. Alam and M.A. Quaiyyum, J. Thermoplast. Compos. Mater., 26, 362 (2013); https://doi.org/10.1177/0892705711428659
- P. Galli, S. Danesi and T. Simonazzi, Polym. Eng. Sci., 24, 544 (1984); https://doi.org/10.1002/pen.760240807
- Oil Shale: History, Incentives, and Policy, CRS Report for Congress (2006). https://fas.org/sgp/crs/misc/RL33359.pdf
- J.R. Dyni, Geology and Resources of Some World Oil-Shale Deposits (No. 2005-5294), US Geological Survey (2006).
- J. Laherrere, Review on Oil Shale Data (2005).
- L. Yin, Recent Trends in Oil Shale, International Oil Shale Conference Amman, Jordan, 7-9 November, p. 7 (2006).
- J. Francu, B. Harvie, B. Laenen, A. Siirde. M. Veiderma, P. Collins and F. Steiger, European Academies Science Advisory Council (2007).
- A.Y. Al-Otoom, R.A. Shawabkeh, A.M. Al-Harahsheh and A.T. Shawaqfeh, Energy, 30, 611 (2005); https://doi.org/10.1016/j.energy.2004.05.024
- The Jordan Oil Shale Energy Company (2012); https://www.jordanewe.com/company-listings/jordan-oil-shalecompany-josco
- R. Veski, Oil Shale, 22, 345 (2005).
- J.O. Jaber and S.D. Probert, Appl. Energy, 62, 169 (1999); https://doi.org/10.1016/S0306-2619(99)00006-9
- R.K. Mõtlep, P.T. Kirsimae, E. Puura and J. Jurgenson, Oil Shale, 24, 405 (2007).
- I. Ahmad and P.A. Mahanwar, J Miner. Mater. Character. Eng., 9, 183 (2010); https://doi.org/10.4236/jmmce.2010.93016
- Y.H. Liu, X.X. Xue and J.M. Shen, Fluid Dynam. Mater. Process., 11, 197 (2015); https://doi.org/10.3970/fdmp.2015.011.195
- J. Gummadi, G.V. Kumar and R. Gunti, Int. J. Modern Eng. Res., 2, 2584 (2012).
- C. N. VinayKumar, Master Thesis, Tallinn University of Technology, Estonia (2017).
- R. Banat and M.M. Fares, Int. J. Compos. Mater., 5, 133 (2015); https://doi.org/10.5923/j.cmaterials.20150505.05
- O.H. Lin, Z.A. Mohd Ishak and H.M. Akil, Mater. Des., 30, 748 (2009); https://doi.org/10.1016/j.matdes.2008.05.007
- M.B.A. Bakar, Z.A. Mohd. Ishak, R.M. Taib, H.D. Rozman, and S.M. Jani, J. Appl. Polym. Sci., 116, 2714 (2010); https://doi.org/10.1002/app.31791
- S.G. Pardo, C. Bernal, A. Ares, M.J. Abad and J. Cano, Polym. Compos., 31, 1722 (2010); https://doi.org/10.1002/pc.20962
- Y.Z. Ma and S. Holditch, Unconventional Oil and Gas Resources Handbook: Evaluation and Development, Gulf Professional Publishing (2015).
- X. Huang, J.Y. Hwang and J.M. Gillis, J. Miner. Mater. Charact. Eng., 2, 11 (2003); https://doi.org/10.4236/jmmce.2003.21002
- M.F. Ashby, Materials Selection in Mechanical Design. Burlington, MA. Butterworth-Heinemann, UK, p. 40 (2011).
- N.L. Feng, S.D. Malingam and S. Irulappasamy, Bolted Joint Behavior of Hybrid Composites, In: Failure Analysis in Biocomposites, FibreReinforced Composites and Hybrid Composites, Woodhead Publishing: UK, p. 79 (2019).
- C. Schick, Anal. Bioanal. Chem., 395, 1589 (2009); https://doi.org/10.1007/s00216-009-3169-y
- S.H. Aljbour, Oil Shale, 33, 260 (2016); https://doi.org/10.3176/oil.2016.3.05
- L.-M. Raado, T. Hain, E. Liisma and R. Kuusik, Oil Shale, 31, 147 (2014); https://doi.org/10.3176/oil.2014.2.05
References
M. Gahleitner and and C. Paulik, Polypropylene, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Germany (2014).
A.L. Andrady and M.A. Neal, Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 1977 (2009); https://doi.org/10.1098/rstb.2008.0304
T.H. Shubhra, A.K.M.M. Alam and M.A. Quaiyyum, J. Thermoplast. Compos. Mater., 26, 362 (2013); https://doi.org/10.1177/0892705711428659
P. Galli, S. Danesi and T. Simonazzi, Polym. Eng. Sci., 24, 544 (1984); https://doi.org/10.1002/pen.760240807
Oil Shale: History, Incentives, and Policy, CRS Report for Congress (2006). https://fas.org/sgp/crs/misc/RL33359.pdf
J.R. Dyni, Geology and Resources of Some World Oil-Shale Deposits (No. 2005-5294), US Geological Survey (2006).
J. Laherrere, Review on Oil Shale Data (2005).
L. Yin, Recent Trends in Oil Shale, International Oil Shale Conference Amman, Jordan, 7-9 November, p. 7 (2006).
J. Francu, B. Harvie, B. Laenen, A. Siirde. M. Veiderma, P. Collins and F. Steiger, European Academies Science Advisory Council (2007).
A.Y. Al-Otoom, R.A. Shawabkeh, A.M. Al-Harahsheh and A.T. Shawaqfeh, Energy, 30, 611 (2005); https://doi.org/10.1016/j.energy.2004.05.024
The Jordan Oil Shale Energy Company (2012); https://www.jordanewe.com/company-listings/jordan-oil-shalecompany-josco
R. Veski, Oil Shale, 22, 345 (2005).
J.O. Jaber and S.D. Probert, Appl. Energy, 62, 169 (1999); https://doi.org/10.1016/S0306-2619(99)00006-9
R.K. Mõtlep, P.T. Kirsimae, E. Puura and J. Jurgenson, Oil Shale, 24, 405 (2007).
I. Ahmad and P.A. Mahanwar, J Miner. Mater. Character. Eng., 9, 183 (2010); https://doi.org/10.4236/jmmce.2010.93016
Y.H. Liu, X.X. Xue and J.M. Shen, Fluid Dynam. Mater. Process., 11, 197 (2015); https://doi.org/10.3970/fdmp.2015.011.195
J. Gummadi, G.V. Kumar and R. Gunti, Int. J. Modern Eng. Res., 2, 2584 (2012).
C. N. VinayKumar, Master Thesis, Tallinn University of Technology, Estonia (2017).
R. Banat and M.M. Fares, Int. J. Compos. Mater., 5, 133 (2015); https://doi.org/10.5923/j.cmaterials.20150505.05
O.H. Lin, Z.A. Mohd Ishak and H.M. Akil, Mater. Des., 30, 748 (2009); https://doi.org/10.1016/j.matdes.2008.05.007
M.B.A. Bakar, Z.A. Mohd. Ishak, R.M. Taib, H.D. Rozman, and S.M. Jani, J. Appl. Polym. Sci., 116, 2714 (2010); https://doi.org/10.1002/app.31791
S.G. Pardo, C. Bernal, A. Ares, M.J. Abad and J. Cano, Polym. Compos., 31, 1722 (2010); https://doi.org/10.1002/pc.20962
Y.Z. Ma and S. Holditch, Unconventional Oil and Gas Resources Handbook: Evaluation and Development, Gulf Professional Publishing (2015).
X. Huang, J.Y. Hwang and J.M. Gillis, J. Miner. Mater. Charact. Eng., 2, 11 (2003); https://doi.org/10.4236/jmmce.2003.21002
M.F. Ashby, Materials Selection in Mechanical Design. Burlington, MA. Butterworth-Heinemann, UK, p. 40 (2011).
N.L. Feng, S.D. Malingam and S. Irulappasamy, Bolted Joint Behavior of Hybrid Composites, In: Failure Analysis in Biocomposites, FibreReinforced Composites and Hybrid Composites, Woodhead Publishing: UK, p. 79 (2019).
C. Schick, Anal. Bioanal. Chem., 395, 1589 (2009); https://doi.org/10.1007/s00216-009-3169-y
S.H. Aljbour, Oil Shale, 33, 260 (2016); https://doi.org/10.3176/oil.2016.3.05
L.-M. Raado, T. Hain, E. Liisma and R. Kuusik, Oil Shale, 31, 147 (2014); https://doi.org/10.3176/oil.2014.2.05