Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Annealing Temperature on Properties of ZnO:(Li,N) Thin Films Prepared by Sol-Gel Method
Corresponding Author(s) : F.C. Yu
Asian Journal of Chemistry,
Vol. 29 No. 3 (2017): Vol 29 Issue 3
Abstract
Lithium and N co-doped ZnO thin-film samples were prepared on SiO2 quartz substrates via sol-gel method, followed by thermal annealing at different temperatures (400, 500, 600, 700 and 800 °C). The influence of annealing temperature on the structural, morphological and optical properties of the ZnO:(Li,N) films were discussed. The X-ray diffraction patterns showed that the increase of annealing temperature (400-700 °C) dramatically improves the crystal quality and c-axis orientation. The scanning electron microscope micrographs indicate that the grain size of the films increases significantly with the increase of the annealing temperature. A broad visible emission was observed for each sample at the room temperature photoluminescence spectra that indicates the temperature dependence of defect concentrations. The ultraviolet-visible spectra showed that the average transmittance in visible spectral region decreases with the increasing of annealing temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.Y. Duan, R.H. Yao and Y.J. Zhao, Appl. Phys. Mater. Sci. Proc., 91, 467 (2008).
- W.C. Shih, T.L. Wang and Y.K. Pen, Appl. Surf. Sci., 258, 5424 (2012).
- J.W. Zhao, C.S. Xie, L. Yang, S.P. Zhang, G.Z. Zhang and Z.M. Cai, Appl. Surf. Sci., 330, 126 (2015).
- G. Chen, T.H. Wang, C.Y. Li, L.Q. Yang, T. Xu, W.Q. Zhu, Y.L. Gao and B. Wei, Org. Elec., 36, 50 (2016).
- D. Singh, S. Singh, U. Kumar, R.S. Srinivasa and S.S. Major, Thin Solid Films, 555, 126 (2014).
- Y.W. Shen, X. Chen, X.Q. Yan, F. Yi, Z.M. Bai, X. Zheng, P. Lin and Y. Zhang, Curr. Appl. Phys., 14, 345 (2014).
- J.S. Xie, Q.F. Lu and Q. Chen, J. Mater. Sci.: Mat. Elec., 26, 2669 (2015).
- E. Senadim Tuzemen, K. Kara, D.K. Takci and R. Esen, Indian J. Phys., 89, 337 (2015).
- J.M. Ashfaq, B.C. Hu, N. Zhou, J. Shaibo, C.Y. Ma and Q.Y. Zhang, J. Lumi., 178, 192 (2016).
- H.P. Lu, P.P. Zhou, H.N. Liu, L.N. Zhang, Y. Yu, Y.L. Li and Z. Wang, Mater. Lett., 165, 123 (2016).
- M.A. Boukadhaba, A. Fouzri, V. Sallet, S.S. Hassani, G. Amiri, A. Lusson and M. Oumezzine, Superlattice Microstruct., 85, 820 (2015).
- V.K. Jayaraman, A.M. Alvarez, Y.M. Kuwabara, Y. Koudriavstev and M.O. Amador, Mater. Sci. Semi. Proc., 47, 32 (2016).
- E. Przezdziecka, W. Lisowski, R. Jakiela, J.W. Sobczak, A. Jablonski, M.A. Pietrzyk, and A. Kozanecki, J. Alloys Comp., 687, 937 (2016).
- Y. Caglar, J. Alloys Comp., 560, 181 (2013).
- M.R. Wang, J. Wang, W. Chen and L.D. Wang, J. Mater. Sci., 40, 5281 (2005).
- N. Bagheri, M.H. Majles Ara and N. Ghazyani, J. Mater. Sci.: Mater. Elec., 27, 1293 (2016).
- F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, R. Mahiou, G. Chadeyron, A. Fischer and A. Boudrioua, J. Mater. Sci.: Mater. Elec., 27, 8040 (2016).
- M. Dutta, T. Ghosh and D. Basak, J. Elec. Mater., 38, 2335 (2009).
- R. Krithiga, S. Sankar and G. Subhashree, J. Mater. Sci.: Mat. Elec., 25, 5201 (2014).
- G. Srinivasan, R.T. Rajendra Kumar and J. Kumar, J. Sol-Gel Sci. Technol., 43, 171 (2007).
References
X.Y. Duan, R.H. Yao and Y.J. Zhao, Appl. Phys. Mater. Sci. Proc., 91, 467 (2008).
W.C. Shih, T.L. Wang and Y.K. Pen, Appl. Surf. Sci., 258, 5424 (2012).
J.W. Zhao, C.S. Xie, L. Yang, S.P. Zhang, G.Z. Zhang and Z.M. Cai, Appl. Surf. Sci., 330, 126 (2015).
G. Chen, T.H. Wang, C.Y. Li, L.Q. Yang, T. Xu, W.Q. Zhu, Y.L. Gao and B. Wei, Org. Elec., 36, 50 (2016).
D. Singh, S. Singh, U. Kumar, R.S. Srinivasa and S.S. Major, Thin Solid Films, 555, 126 (2014).
Y.W. Shen, X. Chen, X.Q. Yan, F. Yi, Z.M. Bai, X. Zheng, P. Lin and Y. Zhang, Curr. Appl. Phys., 14, 345 (2014).
J.S. Xie, Q.F. Lu and Q. Chen, J. Mater. Sci.: Mat. Elec., 26, 2669 (2015).
E. Senadim Tuzemen, K. Kara, D.K. Takci and R. Esen, Indian J. Phys., 89, 337 (2015).
J.M. Ashfaq, B.C. Hu, N. Zhou, J. Shaibo, C.Y. Ma and Q.Y. Zhang, J. Lumi., 178, 192 (2016).
H.P. Lu, P.P. Zhou, H.N. Liu, L.N. Zhang, Y. Yu, Y.L. Li and Z. Wang, Mater. Lett., 165, 123 (2016).
M.A. Boukadhaba, A. Fouzri, V. Sallet, S.S. Hassani, G. Amiri, A. Lusson and M. Oumezzine, Superlattice Microstruct., 85, 820 (2015).
V.K. Jayaraman, A.M. Alvarez, Y.M. Kuwabara, Y. Koudriavstev and M.O. Amador, Mater. Sci. Semi. Proc., 47, 32 (2016).
E. Przezdziecka, W. Lisowski, R. Jakiela, J.W. Sobczak, A. Jablonski, M.A. Pietrzyk, and A. Kozanecki, J. Alloys Comp., 687, 937 (2016).
Y. Caglar, J. Alloys Comp., 560, 181 (2013).
M.R. Wang, J. Wang, W. Chen and L.D. Wang, J. Mater. Sci., 40, 5281 (2005).
N. Bagheri, M.H. Majles Ara and N. Ghazyani, J. Mater. Sci.: Mater. Elec., 27, 1293 (2016).
F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, R. Mahiou, G. Chadeyron, A. Fischer and A. Boudrioua, J. Mater. Sci.: Mater. Elec., 27, 8040 (2016).
M. Dutta, T. Ghosh and D. Basak, J. Elec. Mater., 38, 2335 (2009).
R. Krithiga, S. Sankar and G. Subhashree, J. Mater. Sci.: Mat. Elec., 25, 5201 (2014).
G. Srinivasan, R.T. Rajendra Kumar and J. Kumar, J. Sol-Gel Sci. Technol., 43, 171 (2007).