Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
K2CO3 in NH4OH as an Effective Catalyst Mixture for the Transesterification of High Acid Value Mahua Oil
Corresponding Author(s) : S. Swarna
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
In present study, biodiesel was synthesized from high free fatty acid content Mahua oil using K2CO3 in NH4OH catalyst mixture through transesterification process. Addition of NH4OH to K2CO3, enhanced the basic strength of the catalyst (K2CO3) by generating in-situ KOH in ammonium carbonate medium. The presence of ammonium carbonate in the reaction medium controlled the generation of intermediate water during methoxide formation and thereby increased the biodiesel yield. The maximum yield of 98.5% with a fatty acid methyl ester (FAME) content of 98.95% was obtained at the optimized condition of catalyst mixture of 1g K2CO3 in 0.5 g of NH4OH, oil to methanol molar ratio 1:7 at 55 ºC in 75 min. Characterization of the obtained biodiesel has been carried out using GC-MS and 1H NMR techniques. The physico-chemical properties of the oil and the synthesized biodiesel were tested according to the ASTM D6751 standards and the values are within the range.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.R. Kunduru, H.R.Y. Venkata, D. Vallapudi, N. Deenadayalan and A.R. Kumaravel, Int. J. Renew. Energy Res., 11, 446 (2021).
- J.K. Satyarthi, D. Srinivas and P. Ratnasamy, Energy Fuels, 23, 2273 (2009); https://doi.org/10.1021/ef801011v
- A. Kumar and S. Sharma, Renew. Sustain. Energy Rev., 15, 1791 (2011); https://doi.org/10.1016/j.rser.2010.11.020
- A.E. Atabani, A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin and H. Fayaz, Renew. Sustain. Energy Rev., 18, 211 (2013); https://doi.org/10.1016/j.rser.2012.10.013
- S.P. Singh and D. Singh, Renew. Sustain. Energy Rev., 14, 200 (2010); https://doi.org/10.1016/j.rser.2009.07.017
- U. Schuchardt, R. Sercheli and R.M. Vargas, J. Braz. Chem. Soc., 9, 199 (1998); https://doi.org/10.1590/S0103-50531998000300002
- C. Baroi, E.K. Yanful and M.A. Bergougnou, Int. J. Chem. Reactor Eng., 7, A72 (2009); https://doi.org/10.2202/1542-6580.2027
- L.N. Lesmes-Sanchez, Master of Engineering Science Thesis, Investigations of Cost-Effective Biodiesel Production from High FFA Feedstock, The University of Western Ontario London, Ontario, Canada pp 71-721 (2013).
- M. Balat, Energy Sources A, 29, 895 (2007); https://doi.org/10.1080/00908310500283359
- A.Y. Platonov, A.N. Evdokimov, A.V. Kurzin and H.D. Maiyorova, J. Chem. Eng. Data, 47, 1175 (2002); https://doi.org/10.1021/je020012v
- A. Singh and I.S. Singh, Food Chem., 40, 221 (1991); https://doi.org/10.1016/0308-8146(91)90106-X
- AOCS Official Method Cd 3d-63 acid value.
- S. Gunawardena, D.H. Walpita and M. Ismail, Int. J. Renew. Energy Res., 7, 1639 (2017).
- S. Puhan, N. Vedaraman, B.V.B. Ram, G. Sankarnarayanan and K. Jeychandran, Biomass Bioenergy, 28, 87 (2005); https://doi.org/10.1016/j.biombioe.2004.06.002
- B. Freedman, E.H. Pryde and T.L. Mounts, J. Am. Oil Chem. Soc., 61, 1638 (1984); https://doi.org/10.1007/BF02541649
- I.A. Musa, Egypt. J. Petrol., 25, 21 (2016); https://doi.org/10.1016/j.ejpe.2015.06.007
- S. Chozhavendhan, M.V. Pradhap Singh, B. Fransila, R.P. Kumar and G.K. Devi, Curr. Res. Green Sustain. Chem., 1-2, 1 (2020); https://doi.org/10.1016/j.crgsc.2020.04.002
- E. Standard, Determination of Linolenic Acid and Methyl Ester Contents, EN 14103:2003.
- I.B. Laskar, K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul and L. Rokhum, RSC Adv., 8, 20131 (2018); https://doi.org/10.1039/C8RA02397B
- K.D. Pandiangan and W. Simanjuntak, Indo. J. Chem., 13, 47 (2013); https://doi.org/10.22146/ijc.21325
- M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid and M.A. Khan, Fuel Process. Technol., 92, 336 (2011); https://doi.org/10.1016/j.fuproc.2010.09.025
- V. Hariram and S. Vasanthaseelan, Int. J. Chem. Sci., 14, 661 (2016).
- S.K. Narwal, N.K. Saun, P. Dogra, G. Chauhan and R. Gupta, BioMed Res. Int., 2015, 1 (2015); https://doi.org/10.1155/2015/281934
- G. Knothe, J. Am. Oil Chem. Soc., 78, 1025 (2001); https://doi.org/10.1007/s11746-001-0382-0
References
S.R. Kunduru, H.R.Y. Venkata, D. Vallapudi, N. Deenadayalan and A.R. Kumaravel, Int. J. Renew. Energy Res., 11, 446 (2021).
J.K. Satyarthi, D. Srinivas and P. Ratnasamy, Energy Fuels, 23, 2273 (2009); https://doi.org/10.1021/ef801011v
A. Kumar and S. Sharma, Renew. Sustain. Energy Rev., 15, 1791 (2011); https://doi.org/10.1016/j.rser.2010.11.020
A.E. Atabani, A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin and H. Fayaz, Renew. Sustain. Energy Rev., 18, 211 (2013); https://doi.org/10.1016/j.rser.2012.10.013
S.P. Singh and D. Singh, Renew. Sustain. Energy Rev., 14, 200 (2010); https://doi.org/10.1016/j.rser.2009.07.017
U. Schuchardt, R. Sercheli and R.M. Vargas, J. Braz. Chem. Soc., 9, 199 (1998); https://doi.org/10.1590/S0103-50531998000300002
C. Baroi, E.K. Yanful and M.A. Bergougnou, Int. J. Chem. Reactor Eng., 7, A72 (2009); https://doi.org/10.2202/1542-6580.2027
L.N. Lesmes-Sanchez, Master of Engineering Science Thesis, Investigations of Cost-Effective Biodiesel Production from High FFA Feedstock, The University of Western Ontario London, Ontario, Canada pp 71-721 (2013).
M. Balat, Energy Sources A, 29, 895 (2007); https://doi.org/10.1080/00908310500283359
A.Y. Platonov, A.N. Evdokimov, A.V. Kurzin and H.D. Maiyorova, J. Chem. Eng. Data, 47, 1175 (2002); https://doi.org/10.1021/je020012v
A. Singh and I.S. Singh, Food Chem., 40, 221 (1991); https://doi.org/10.1016/0308-8146(91)90106-X
AOCS Official Method Cd 3d-63 acid value.
S. Gunawardena, D.H. Walpita and M. Ismail, Int. J. Renew. Energy Res., 7, 1639 (2017).
S. Puhan, N. Vedaraman, B.V.B. Ram, G. Sankarnarayanan and K. Jeychandran, Biomass Bioenergy, 28, 87 (2005); https://doi.org/10.1016/j.biombioe.2004.06.002
B. Freedman, E.H. Pryde and T.L. Mounts, J. Am. Oil Chem. Soc., 61, 1638 (1984); https://doi.org/10.1007/BF02541649
I.A. Musa, Egypt. J. Petrol., 25, 21 (2016); https://doi.org/10.1016/j.ejpe.2015.06.007
S. Chozhavendhan, M.V. Pradhap Singh, B. Fransila, R.P. Kumar and G.K. Devi, Curr. Res. Green Sustain. Chem., 1-2, 1 (2020); https://doi.org/10.1016/j.crgsc.2020.04.002
E. Standard, Determination of Linolenic Acid and Methyl Ester Contents, EN 14103:2003.
I.B. Laskar, K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul and L. Rokhum, RSC Adv., 8, 20131 (2018); https://doi.org/10.1039/C8RA02397B
K.D. Pandiangan and W. Simanjuntak, Indo. J. Chem., 13, 47 (2013); https://doi.org/10.22146/ijc.21325
M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid and M.A. Khan, Fuel Process. Technol., 92, 336 (2011); https://doi.org/10.1016/j.fuproc.2010.09.025
V. Hariram and S. Vasanthaseelan, Int. J. Chem. Sci., 14, 661 (2016).
S.K. Narwal, N.K. Saun, P. Dogra, G. Chauhan and R. Gupta, BioMed Res. Int., 2015, 1 (2015); https://doi.org/10.1155/2015/281934
G. Knothe, J. Am. Oil Chem. Soc., 78, 1025 (2001); https://doi.org/10.1007/s11746-001-0382-0