Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphene Oxide Nanoparticles Decorated Pencil Lead as Urea Sensing Electrode
Corresponding Author(s) : Geeta Singh
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
In present study, a low-cost and steady electrochemical biosensor has been developed based on graphene oxide nanoparticles (GONPs), electrodeposited on the pencil lead electrode (PLE). The physical and morphological studies revealed the nano-scale range of GONPs that has an average grain size/layer thickness of 2.27 nm and agglomeration size of 90-120 nm. Urease enzyme was immobilized on PLE/GONPs electrode after surface treatment with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) to impart stable peptide bond. Scanning electron microscopy (SEM) studies demonstrate the difference between unmodified and modified PLE electrodes and depict the spherical, circular and flaky-like morphology. The electrochemical analysis of urea considerably improved on the PLE/GONPs/Ur compared to the untailored PLE electrode. The reported urea biosensor operated in a linear dynamic range between 0.30-50 mM that attained a recognition limit of 0.06 mM and exhibited an advanced exposure sensitivity of 0.814 μA mM-1 cm-2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Bollella and E. Katz, Sensors, 20, 6645 (2020); https://doi.org/10.3390/s20226645
- I.G. David, D.E. Popa and M. Buleandra, J. Anal. Methods Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/1905968
- D.W. Kimmel, G. LeBlanc, M. Meschievitz and D. Cliffel, Anal. Chem., 84, 685 (2012); https://doi.org/10.1021/ac202878q
- M.R. Akanda, M. Sohail, M.A. Aziz and A.N. Kawde, Electroanalysis, 28, 408 (2016); https://doi.org/10.1002/elan.201500374
- K.B. Babitha, P.S. Soorya, A. Peer Mohamed, R.B. Rakhi and S. Ananthakumar, Mater. Adv., 1, 1939 (2020); https://doi.org/10.1039/D0MA00445F
- A. Torrinha, N. Jiyane, M. Sabela, K. Bisetty, M.C.B.S.M. Montenegro and A.N. Araújo, Sci. Rep., 10, 16535 (2020); https://doi.org/10.1038/s41598-020-73635-7
- H. Beitollahi, S.Z. Mohammadi, M. Safaei and S. Tajik, Anal. Methods, 12, 1547 (2020); https://doi.org/10.1039/C9AY02598G
- J. Wang, A. Kawde and E. Sahlin, Analyst, 125, 5 (2000); https://doi.org/10.1039/a907364g
- S. Singh, M. Sharma and G. Singh, IET Nanobiotechnol., 15, 358 (2021); https://doi.org/10.1049/nbt2.12050
- S.N. Botewad, D.K. Gaikwad, N.B. Girhe, H.N. Thorat and P.P. Pawar, Biotechnol. Appl. Biochem., (2021); https://doi.org/10.1002/bab.2168
- M. Hartleb and K. Gutkowski, World J. Gastroenterol., 18, 3035 (2012); https://doi.org/10.3748/wjg.v18.i24.3035
- J.C. Chou, C.Y. Wu, S.H. Lin, P.-Y. Kuo, C.-H. Lai, Y.-H. Nien, Y.-X. Wu and T.-Y. Lai, Sensors, 19, 3004 (2019); https://doi.org/10.3390/s19133004
- R. Vanholder, T. Gryp and G. Glorieux, Nephrol. Dial. Transplant., 33, 4 (2018); https://doi.org/10.1093/ndt/gfx039
- D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, Sensors, 8, 1400 (2008); https://doi.org/10.3390/s80314000
- C.S. Pundir, S. Jakhar and V. Narwal, Biosens. Bioelectron., 123, 36 (2019); https://doi.org/10.1016/j.bios.2018.09.067
- C. Zhu, G. Yang, H. Li, D. Du and Y. Lin, Anal. Chem., 87, 230 (2015); https://doi.org/10.1021/ac5039863
- G. Zhu, L. Cheng, R. Qi, M. Zhang, J. Zhao, L. Zhu and M. Dong, Microchim. Acta, 187, 72 (2020); https://doi.org/10.1007/s00604-019-4026-0
- S. Selvarajan, A. Suganthi and M. Rajarajan, Ultrason. Sonochem., 42, 183 (2018); https://doi.org/10.1016/j.ultsonch.2017.11.030
- S.N. Botewad, V.G. Pahurkar, G.G. Muley, D.K. Gaikwad, G.A. Bodkhe, M.D. Shirsat and P.P. Pawar, Front. Mater., 7, 184 (2020); https://doi.org/10.3389/fmats.2020.00184
- S. Amin, A. Tahira, A. Solangi, V. Beni, J.R. Morante, M. Falhman, X. Liu, R. Mazzaro, Z.H. Ibupoto and A. Vomiero, RSC Adv., 9, 14443 (2019); https://doi.org/10.1039/C9RA00909D
- J. Chen, B. Yao, C. Li and G. Shi, Carbon N.Y., 64, 225 (2013); https://doi.org/10.1016/j.carbon.2013.07.055
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
- L. Shahriary and A.A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 58 (2014).
- G. Das, Int. J. Nanomedicine, 10, 55 (2015).
- M. Nair, S.M. Best and R.E. Cameron, Appl. Sci., 10, 6911 (2020); https://doi.org/10.3390/app10196911
- J.Y. Kim, G.Y. Sung and M. Park, Biomedicines, 8, 596 (2020); https://doi.org/10.3390/biomedicines8120596
- L. Kumar and A. Kaushik, J. Chem. Pharm. Res., 9, 1 (2017).
- F.Y. Ban, S.R. Majid, N.M. Huang and H.N. Lim, Int. J. Electrochem. Sci., 7, 4345 (2012).
- A. Nepal, G.P. Singh, B.N. Flanders and C.M. Sorensen, Nanotechnology, 24, 245602 (2013); https://doi.org/10.1088/0957-4484/24/24/245602
- F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza and M. Khenfouch, J. Chem., 2013, 1 (2013); https://doi.org/10.1155/2013/150536
- W.J. Lin, C.-S. Liao, J.-H. Jhang and Y.-C. Tsai, Electrochem. Commun., 11, 2153 (2009); https://doi.org/10.1016/j.elecom.2009.09.018
- K. Pokpas, S. Zbeda, N. Jahed, N. Mohamed and P.G. Baker, Int. J. Electrochem. Sci., 9, 736 (2014).
- H.L. Guo, X.F. Wang, Q.Y. Qian, F.-B. Wang and X.-H. Xia, ACS Nano, 3, 2653 (2009); https://doi.org/10.1021/nn900227d
- A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h
- P. Pinyou, V. Blay, K. Chansaenpak and S. Lisnund, Chemosensors, 8, 133 (2020); https://doi.org/10.3390/chemosensors8040133
- E.N. Waruwu and S. Abd Hakim, J. Learn. Technol. Phys., 1, 62 (2020); https://doi.org/10.24114/jltp.v1i2.22713
- S. Abraham, V. Ciobota, S. Srivastava, S.K. Srivastava, R.K. Singh, J. Dellith, B.D. Malhotra, M. Schmitt, J. Popp and A. Srivastava, Anal. Methods, 6, 6711 (2014); https://doi.org/10.1039/C4AY01303D
- P. Ramasami Sundhar Baabu, M.B. Gumpu, N. Nesakumar, J.B.B. Rayappan and A.J. Kulandaisamy, Water Air Soil Pollut., 231, 545 (2020); https://doi.org/10.1007/s11270-020-04899-y
- E. Muthusankar, V.K. Ponnusamy and D. Ragupathy, Synth. Met., 254, 134 (2019); https://doi.org/10.1016/j.synthmet.2019.06.012
References
P. Bollella and E. Katz, Sensors, 20, 6645 (2020); https://doi.org/10.3390/s20226645
I.G. David, D.E. Popa and M. Buleandra, J. Anal. Methods Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/1905968
D.W. Kimmel, G. LeBlanc, M. Meschievitz and D. Cliffel, Anal. Chem., 84, 685 (2012); https://doi.org/10.1021/ac202878q
M.R. Akanda, M. Sohail, M.A. Aziz and A.N. Kawde, Electroanalysis, 28, 408 (2016); https://doi.org/10.1002/elan.201500374
K.B. Babitha, P.S. Soorya, A. Peer Mohamed, R.B. Rakhi and S. Ananthakumar, Mater. Adv., 1, 1939 (2020); https://doi.org/10.1039/D0MA00445F
A. Torrinha, N. Jiyane, M. Sabela, K. Bisetty, M.C.B.S.M. Montenegro and A.N. Araújo, Sci. Rep., 10, 16535 (2020); https://doi.org/10.1038/s41598-020-73635-7
H. Beitollahi, S.Z. Mohammadi, M. Safaei and S. Tajik, Anal. Methods, 12, 1547 (2020); https://doi.org/10.1039/C9AY02598G
J. Wang, A. Kawde and E. Sahlin, Analyst, 125, 5 (2000); https://doi.org/10.1039/a907364g
S. Singh, M. Sharma and G. Singh, IET Nanobiotechnol., 15, 358 (2021); https://doi.org/10.1049/nbt2.12050
S.N. Botewad, D.K. Gaikwad, N.B. Girhe, H.N. Thorat and P.P. Pawar, Biotechnol. Appl. Biochem., (2021); https://doi.org/10.1002/bab.2168
M. Hartleb and K. Gutkowski, World J. Gastroenterol., 18, 3035 (2012); https://doi.org/10.3748/wjg.v18.i24.3035
J.C. Chou, C.Y. Wu, S.H. Lin, P.-Y. Kuo, C.-H. Lai, Y.-H. Nien, Y.-X. Wu and T.-Y. Lai, Sensors, 19, 3004 (2019); https://doi.org/10.3390/s19133004
R. Vanholder, T. Gryp and G. Glorieux, Nephrol. Dial. Transplant., 33, 4 (2018); https://doi.org/10.1093/ndt/gfx039
D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, Sensors, 8, 1400 (2008); https://doi.org/10.3390/s80314000
C.S. Pundir, S. Jakhar and V. Narwal, Biosens. Bioelectron., 123, 36 (2019); https://doi.org/10.1016/j.bios.2018.09.067
C. Zhu, G. Yang, H. Li, D. Du and Y. Lin, Anal. Chem., 87, 230 (2015); https://doi.org/10.1021/ac5039863
G. Zhu, L. Cheng, R. Qi, M. Zhang, J. Zhao, L. Zhu and M. Dong, Microchim. Acta, 187, 72 (2020); https://doi.org/10.1007/s00604-019-4026-0
S. Selvarajan, A. Suganthi and M. Rajarajan, Ultrason. Sonochem., 42, 183 (2018); https://doi.org/10.1016/j.ultsonch.2017.11.030
S.N. Botewad, V.G. Pahurkar, G.G. Muley, D.K. Gaikwad, G.A. Bodkhe, M.D. Shirsat and P.P. Pawar, Front. Mater., 7, 184 (2020); https://doi.org/10.3389/fmats.2020.00184
S. Amin, A. Tahira, A. Solangi, V. Beni, J.R. Morante, M. Falhman, X. Liu, R. Mazzaro, Z.H. Ibupoto and A. Vomiero, RSC Adv., 9, 14443 (2019); https://doi.org/10.1039/C9RA00909D
J. Chen, B. Yao, C. Li and G. Shi, Carbon N.Y., 64, 225 (2013); https://doi.org/10.1016/j.carbon.2013.07.055
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
L. Shahriary and A.A. Athawale, Int. J. Renew. Energy Environ. Eng., 2, 58 (2014).
G. Das, Int. J. Nanomedicine, 10, 55 (2015).
M. Nair, S.M. Best and R.E. Cameron, Appl. Sci., 10, 6911 (2020); https://doi.org/10.3390/app10196911
J.Y. Kim, G.Y. Sung and M. Park, Biomedicines, 8, 596 (2020); https://doi.org/10.3390/biomedicines8120596
L. Kumar and A. Kaushik, J. Chem. Pharm. Res., 9, 1 (2017).
F.Y. Ban, S.R. Majid, N.M. Huang and H.N. Lim, Int. J. Electrochem. Sci., 7, 4345 (2012).
A. Nepal, G.P. Singh, B.N. Flanders and C.M. Sorensen, Nanotechnology, 24, 245602 (2013); https://doi.org/10.1088/0957-4484/24/24/245602
F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza and M. Khenfouch, J. Chem., 2013, 1 (2013); https://doi.org/10.1155/2013/150536
W.J. Lin, C.-S. Liao, J.-H. Jhang and Y.-C. Tsai, Electrochem. Commun., 11, 2153 (2009); https://doi.org/10.1016/j.elecom.2009.09.018
K. Pokpas, S. Zbeda, N. Jahed, N. Mohamed and P.G. Baker, Int. J. Electrochem. Sci., 9, 736 (2014).
H.L. Guo, X.F. Wang, Q.Y. Qian, F.-B. Wang and X.-H. Xia, ACS Nano, 3, 2653 (2009); https://doi.org/10.1021/nn900227d
A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h
P. Pinyou, V. Blay, K. Chansaenpak and S. Lisnund, Chemosensors, 8, 133 (2020); https://doi.org/10.3390/chemosensors8040133
E.N. Waruwu and S. Abd Hakim, J. Learn. Technol. Phys., 1, 62 (2020); https://doi.org/10.24114/jltp.v1i2.22713
S. Abraham, V. Ciobota, S. Srivastava, S.K. Srivastava, R.K. Singh, J. Dellith, B.D. Malhotra, M. Schmitt, J. Popp and A. Srivastava, Anal. Methods, 6, 6711 (2014); https://doi.org/10.1039/C4AY01303D
P. Ramasami Sundhar Baabu, M.B. Gumpu, N. Nesakumar, J.B.B. Rayappan and A.J. Kulandaisamy, Water Air Soil Pollut., 231, 545 (2020); https://doi.org/10.1007/s11270-020-04899-y
E. Muthusankar, V.K. Ponnusamy and D. Ragupathy, Synth. Met., 254, 134 (2019); https://doi.org/10.1016/j.synthmet.2019.06.012